897 resultados para Central giant cell granuloma
Resumo:
The metalloprotease meprin has been implicated in tissue remodelling due to its capability to degrade extracellular matrix components. Here, we investigated the susceptibility of tenascin-C to cleavage by meprinbeta and the functional properties of its proteolytic fragments. A set of monoclonal antibodies against chicken and human tenascin-C allowed the mapping of proteolytic fragments generated by meprinbeta. In chicken tenascin-C, meprinbeta processed all three major splicing variants by removal of 10kDa N-terminal and 38kDa C-terminal peptides, leaving a large central part of subunits intact. A similar cleavage pattern was found for large human tenascin-C variant where two N-terminal peptides (10 or 15kDa) and two C-terminal fragments (40 and 55kDa) were removed from the intact subunit. N-terminal sequencing revealed the exact amino acid positions of cleavage sites. In both chicken and human tenascin-C N-terminal cleavages occurred just before and/or after the heptad repeats involved in subunit oligomerization. In the human protein, an additional cleavage site was identified in the alternative fibronectin type III repeat D. Whereas all these sites are known to be attacked by several other proteases, a unique cleavage by meprinbeta was located to the 7th constant fibronectin type III repeat in both chicken and human tenascin-C, thereby removing the C-terminal domain involved in its anti-adhesive activity. In cell adhesion assays meprinbeta-digested human tenascin-C was not able to interfere with fibronectin-mediated cell spreading, confirming cleavage in the anti-adhesive domain. Whereas the expression of meprinbeta and tenascin-C does not overlap in normal colon tissue, inflamed lesions of the mucosa from patients with Crohn's disease exhibited many meprinbeta-positive leukocytes in regions where tenascin-C was strongly induced. Our data indicate that, at least under pathological conditions, meprinbeta might attack specific functional sites in tenascin-C that are important for its oligomerization and anti-adhesive activity.
Resumo:
We have investigated the use of hierarchical clustering of flow cytometry data to classify samples of conventional central chondrosarcoma, a malignant cartilage forming tumor of uncertain cellular origin, according to similarities with surface marker profiles of several known cell types. Human primary chondrosarcoma cells, articular chondrocytes, mesenchymal stem cells, fibroblasts, and a panel of tumor cell lines from chondrocytic or epithelial origin were clustered based on the expression profile of eleven surface markers. For clustering, eight hierarchical clustering algorithms, three distance metrics, as well as several approaches for data preprocessing, including multivariate outlier detection, logarithmic transformation, and z-score normalization, were systematically evaluated. By selecting clustering approaches shown to give reproducible results for cluster recovery of known cell types, primary conventional central chondrosacoma cells could be grouped in two main clusters with distinctive marker expression signatures: one group clustering together with mesenchymal stem cells (CD49b-high/CD10-low/CD221-high) and a second group clustering close to fibroblasts (CD49b-low/CD10-high/CD221-low). Hierarchical clustering also revealed substantial differences between primary conventional central chondrosarcoma cells and established chondrosarcoma cell lines, with the latter not only segregating apart from primary tumor cells and normal tissue cells, but clustering together with cell lines from epithelial lineage. Our study provides a foundation for the use of hierarchical clustering applied to flow cytometry data as a powerful tool to classify samples according to marker expression patterns, which could lead to uncover new cancer subtypes.
Resumo:
Naive T cells are migratory cells that continuously recirculate between blood and lymphoid tissues. Antigen-specific stimulation of T cells within the lymph nodes reprograms the trafficking properties of T cells by inducing a specific set of adhesion molecules and chemokine receptors on their surface which allow these activated and effector T cells to effectively and specifically home to extralymphoid organs. The observations of organ-specific homing of T cells initiated the development of therapeutic strategies targeting adhesion receptors for organ-specific inhibition of chronic inflammation. As most adhesion receptors have additional immune functions besides mediating leukocyte trafficking, these drugs may have additional immunomodulatory effects. Therapeutic targeting of T-cell trafficking to the central nervous system is the underlying concept of a novel treatment of relapsing remitting multiple sclerosis with the humanized anti-alpha-4-integrin antibody natalizumab. In this chapter, we describe a possible preclinical in vivo approach to directly visualize the therapeutic efficacy of a given drug in inhibiting T-cell homing to a certain organ at the example of the potential of natalizumab to inhibit the trafficking of human T cells to the inflamed central nervous system in an animal model of multiple sclerosis.
Resumo:
Reproductive failure, determined as recurrent spontaneous abortions (RSA) or recurrent implantation failure (RIF) in women is not well understood. Several factors, including embryo quality, and cellular and molecular changes in endometrium may contribute to the insufficient feto-maternal interaction resulting in reproductive failure. Prior clinical studies suggest an inadequate endometrial growth and development of the endometrium, leading to a lesser endometrial thickness.
Resumo:
Abstract Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER), which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH) and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs). The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer. The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.
Resumo:
Perineurioma is an uncommon, mostly benign, spindle-cell tumor of peripheral nerve sheath origin with a predilection for the soft tissues. Although increasing awareness points to the sites of involvement by perineurioma possibly being as ubiquitous as those frequented by schwannian tumors, only one intracerebral example has been described to date. We report on a surgically resected perineurioma of the falx cerebri in an 86-year-old woman. Preoperative imaging showed an enhancing extraaxial mass of 6 cm × 5.7 cm × 3.7 cm. Histologically, the tumor consisted of a proliferation of spindle cells interwoven by a lattice of basal lamina. Alongside a prevailing soft tissue perineurioma pattern, sclerosing and reticular areas were seen as well. Tumor cells coexpressed EMA and GLUT-1, and a minority immunoreacted for smooth muscle actin. Pericellular basal lamina was decorated with collagen type IV. No staining for S100 protein was detected. Mitotic activity was virtually absent, and the MIB1 labeling index averaged 2%. Ultrastructural examination revealed abundant pinocytotic vesicles within and conspicuous tight junctions between slender cytoplasmic processes which, in turn, were encased by discontinuous basal lamina. FISH analysis confirmed loss of at least part of one chromosome 22q. This observation calls attention to perineurioma as a novel item in the repertoire of low-grade meningial spindle cell neoplasms, in the differential diagnostic context of which it is apt to being misconstrued as either meningioma, solitary fibrous tumor, or neurofibroma. Confusion with the latter bears the risk of overgrading innocuous features of perineurioma as criteria for malignancy.
Resumo:
Central nervous system space-occupying lesions with clear-cell features encompass a nosologically heterogeneous array, ranging from reactive histiocytic proliferations to neuroepithelial or meningothelial neoplasms of various grades and to metastases. In the face of such differential diagnostic breadth, recognizing cytoplasmic lucency as part of the morphological spectrum of some low grade gliomas will directly have an impact on patient care. We describe a prevailing clear-cell change in an epileptogenic left temporal pleomorphic xanthoastrocytoma surgically resected from a 36-year-old man. Mostly subarachnoid and focally calcified, the tumor was composed of fascicles of moderately atypical spindle cells with optically lucent cytoplasm that tended to intermingle with a desmoplastic mesh of reticulin fibers. Immunohistochemically, coexpression of S100 protein, vimentin, GFAP, and CD34 was noted. Conversely, neither punctate staining for EMA nor positivity for CD68 was seen. Mitotic activity was absent, and the MIB1 labeling index was 2-3% on average. Diastase-sensitive PAS-positive granula indicated clear-cell change to proceed from glycogen storage. Electron microscopy showed tumor cell cytoplasm to be largely obliterated by non-lysosomal-bound pools of glycogen, while hardly any fat vacuole was encountered. Neither ependymal-derived organelles nor annular lamellae suggesting oligodendroglial differentiation were detected. The latter differential diagnosis was further invalidated by lack of codeletion of chromosomal regions 1p36 and 19q13 on molecular genetic testing. By significantly interfering with pattern recognition as an implicit approach in histopathology, clear-cell change in pleomorphic xanthoastrocytoma is likely to suspend its status as a "classic", and to prompt more deductive differential diagnostic strategies to exclude look-alikes, especially clear-cell ependymoma and oligodendroglioma.
Resumo:
microRNAs (miRNAs) are small non-coding RNAs that are frequently involved in carcinogenesis. Although many miRNAs form part of integrated networks, little information is available how they interact with each other to control cellular processes. miR-34a and miR-15a/16 are functionally related; they share common targets and control similar processes including G1-S cell cycle progression and apoptosis. The aim of this study was to investigate the combined action of miR-34a and miR-15a/16 in non-small cell lung cancer (NSCLC) cells.
Resumo:
Taking intraoperative frozen sections (FS) is a widely used procedure in oncologic surgery. However so far no evidence of an association of FS analysis and premalignant changes in the surgical margin exists. Therefore, the aim of this study was to evaluate the impact of FS on different categories of the final margins of squamous cell carcinoma (SCC) of the oral cavity and lips.
Resumo:
A fundamental phenomenon in inflammation is the loss of endothelial barrier function, in which the opening of endothelial cell junctions plays a central role. However, the molecular mechanisms that ultimately open the cell junctions are largely unknown.
Resumo:
Leucocyte migration into the central nervous system is a key stage in the development of multiple sclerosis. While much has been learnt regarding the sequential steps of leucocyte capture, adhesion and migration across the vasculature, the molecular basis of leucocyte extravasation is only just being unravelled. It is now recognized that bidirectional crosstalk between the immune cell and endothelium is an essential element in mediating diapedesis during both normal immune surveillance and under inflammatory conditions. The induction of various signalling networks, through engagement of cell surface molecules such as integrins on the leucocyte and immunoglobulin superfamily cell adhesion molecules on the endothelial cell, play a major role in determining the pattern and route of leucocyte emigration. In this review we discuss the extent of our knowledge regarding leucocyte migration across the blood-brain barrier and in particular the endothelial cell signalling pathways contributing to this process.
Resumo:
Background Data on combination antiretroviral therapy (cART) in remote rural African regions is increasing. Methods We assessed prospectively initial cART in HIV-infected adults treated from 2005 to 2008 at St. Francis Designated District Hospital, Ifakara, Tanzania. Adherence was assisted by personal adherence supporters. We estimated risk factors of death or loss to follow-up by Cox regression during the first 12 months of cART. Results Overall, 1,463 individuals initiated cART, which was nevirapine-based in 84.6%. The median age was 40 years (IQR 34-47), 35.4% were males, 7.6% had proven tuberculosis. Median CD4 cell count was 131 cells/μl and 24.8% had WHO stage 4. Median CD4 cell count increased by 61 and 130 cells/μl after 6 and 12 months, respectively. 215 (14.7%) patients modified their treatment, mostly due to toxicity (56%), in particular polyneuropathy and anemia. Overall, 129 patients died (8.8%) and 189 (12.9%) were lost to follow-up. In a multivariate analysis, low CD4 cells at starting cART were associated with poorer survival and loss to follow-up (HR 1.77, 95% CI 1.15-2.75, p = 0.009; for CD4 <50 compared to >100 cells/μl). Higher weight was strongly associated with better survival (HR 0.63, 95% CI 0.51-0.76, p < 0.001 per 10 kg increase). Conclusions cART initiation at higher CD4 cell counts and better general health condition reduces HIV related mortality in a rural African setting. Efforts must be made to promote earlier HIV diagnosis to start cART timely. More research is needed to evaluate effective strategies to follow cART at a peripheral level with limited technical possibilities.
Resumo:
Recent studies have suggested that the scavenger receptor MARCO (macrophage receptor with collagenous structure) mediates activation of the immune response in bacterial infection of the central nervous system (CNS). The chemotactic G-protein-coupled receptor (GPCR) formyl-peptide-receptor like-1 (FPRL1) plays an essential role in the inflammatory responses of host defence mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the antimicrobial peptide cathelicidin CRAMP/LL-37 is up-regulated in bacterial meningitis, but the mechanisms underlying CRAMP expression are far from clear.
Resumo:
CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.