970 resultados para Center of pressure
Resumo:
The elderly are at the highest risk of developing pressure ulcers that result in prolonged hospitalization, high health care costs, increased mortality, and decreased quality of life. The burden of pressure ulcers will intensify because of a rapidly increasing elderly population in the United States (US). Poor nutrition is a major predictor of pressure ulcer formation. The purpose of this study was to examine the effects of a comprehensive, interdisciplinary nutritional protocol on: 1) pressure ulcer wound healing 2) length of hospital stays, and 3) charges for pressure ulcer management. Using a pre-intervention/post intervention quasi-experimental design the study sample was composed of 100 patients 60 years or older, admitted with or acquiring a pressure ulcer. A pre-intervention group (n= 50) received routine pressure ulcer care (standard diet, dressing changes, and equipment). A post-intervention group received routine care plus an interdisciplinary nutrition intervention (physical therapy, speech therapy, occupational therapy, added protein and calories to the diet). Research questions were analyzed using descriptive statistics, frequencies, Chi-Square Tests, and T-tests. Findings indicated that the comprehensive, interdisciplinary nutritional protocol had a significant effect on the rate of wound healing in Week3 and Week4, total hospital length of stay (pre-intervention M= 43.2 days, SD=31.70 versus M=31.77, SD=12.02 post-intervention), and pressure ulcer length of stay (pre-intervention 25.28 days, SD5.60 versus 18.40 days, SD 5.27 post-intervention). Although there was no significant difference in total charges for the pre-intervention group ($727,245.00) compared to the post-intervention group ($702,065.00), charges for speech (m=$5885.12, SD=$332.55), pre albumin (m=$808.52,SD= $332.55), and albumin($278 .88, SD=55.00) were higher in the pre-intervention group and charges for PT ($5721.26, SD$3655.24) and OT($2544 .64, SD=1712.863) were higher in the post-intervention group. Study findings indicate that this comprehensive nutritional intervention was effective in improving pressure ulcer wound healing, decreasing both hospital length of stay for treatment of pressure ulcer and total hospital length of stay while showing no significant additional charges for treatment of pressure ulcers.
Resumo:
Most liquid electrolytes used in commercial lithium-ion batteries are composed by alkylcarbonate mixture containing lithium salt. The decomposition of these solvents by oxidation or reduction during cycling of the cell, induce generation of gases (CO2, CH4, C2H4, CO …) increasing of pressure in the sealed cell, which causes a safety problem [1]. The prior understanding of parameters, such as structure and nature of salt, temperature pressure, concentration, salting effects and solvation parameters, which influence gas solubility and vapor pressure of electrolytes is required to formulate safer and suitable electrolytes especially at high temperature.
We present in this work the CO2, CH4, C2H4, CO solubility in different pure alkyl-carbonate solvents (PC, DMC, EMC, DEC) and their binary or ternary mixtures as well as the effect of temperature and lithium salt LiX (X = LiPF6, LiTFSI or LiFAP) structure and concentration on these properties. Furthermore, in order to understand parameters that influence the choice of the structure of the solvents and their ability to dissolve gas through the addition of a salt, we firstly analyzed experimentally the transport properties (Self diffusion coefficient (D), fluidity (h-1), and conductivity (s) and lithium transport number (tLi) using the Stock-Einstein, and extended Jones-Dole equations [2]. Furthermore, measured data for the of CO2, C2H4, CH4 and CO solubility in pure alkylcarbonates and their mixtures containing LiPF6; LiFAP; LiTFSI salt, are reported as a function of temperature and concentration in salt. Based on experimental solubility data, the Henry’s law constant of gases in these solvents and electrolytes was then deduced and compared with values predicted by using COSMO-RS methodology within COSMOthermX software. From these results, the molar thermodynamic functions of dissolution such as the standard Gibbs energy, the enthalpy, and the entropy, as well as the mixing enthalpy of the solvents and electrolytes with the gases in its hypothetical liquid state were calculated and discussed [3]. Finally, the analysis of the CO2 solubility variations with the salt addition was then evaluated by determining specific ion parameters Hi by using the Setchenov coefficients in solution. This study showed that the gas solubility is entropy driven and can been influenced by the shape, charge density, and size of the anions in lithium salt.
References
[1] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, Journal of the American Chemical Society 133 (2011) 8040-8047.
[2] P. Porion, Y.R. Dougassa, C. Tessier, L. El Ouatani, J. Jacquemin, M. Anouti, Electrochimica Acta 114 (2013) 95-104.
[3] Y.R. Dougassa, C. Tessier, L. El Ouatani, M. Anouti, J. Jacquemin, The Journal of Chemical Thermodynamics 61 (2013) 32-44.
Resumo:
Communication can be seen as one of the most important features to manage conflicts and the stress of the work teams that operate in environments with strong pressure, complex operations and continuous risk, which are aspects that characterize a high reliability organization. This article aims to highlight the importance of communication in high-reliability organizations, having as object of study the accidents and incidents in civil aviation area. It refers to a qualitative research, outlined by documental analysis based on investigations conducted by the Federal Aviation Administration and the Center of Investigation and Prevention of Aeronautical Accidents. The results point out that human errors account for 60 to 80 percent of accidents and incidents. Most of these occurrences are attributed to miscommunication between the professionals involved with the air and ground operation, such as pilots, crewmembers and maintenance staff, and flight controllers. Inappropriate tone of voice usage, difficulties to understand different accents between the issuer and the receiver or even difficulty to perceive red flags between the lines of verbal and non-verbal communication, are elements that contribute to the fata of understanding between people involved in the operation. As a research limitation this present research pointed out a lack of a special category of "interpersonal communications failures" in the official agency reports. So, the researchers must take the conceptual definition of "social ability", communication implied, to classify behaviors and communication matters accordingly. Other research finding indicates that communication is superficially approached in the contents of air operations courses what could mitigate the lack of communications skills as a social ability. Part of the research findings refers to the contents of communication skills development into the program to train professional involved in air flight and ground operations. So, it is expected that this present article gives an appropriate highlight towards the improvement of flight operations training programs. Developing communication skills among work teams in high reliability organizations can contribute to mitigate stress, accidents and incidents in Civil Aviation Field. The original contribution of this article is the proposal of the main contents that should be developed in a Communication Skills Training Program, specially addressed to Civil Aviation operations.
Resumo:
The World Heritage List (WHL) is widely considered a powerful tool for national tourism campaigns. Sites inscribed on the WHL by the United Nations Educational, Scientific, and Cultural Organization (UNESCO) are commonly treated as catholicons in promoting the tourism industry, which in turn helps to promote economic growth and development. This study analyzes local community perceptions of the importance of the World Heritage Site (WHS) classification of the historic center of the Portuguese city of E ́vora. The research also includes an analysis of the local residents’ perceived tourism impacts on the municipality of E ́ vora. The methodology consists of quan- titative research based on a self-administered survey applied to convenience sam- ples of local residents of the municipality of E ́ vora in the beginning of 2014. The local residents’ perceptions of the level of importance of the WHS classification to the municipality and its impact in the increase of tourists is analyzed. Positive and negative tourism impacts are then ranked and a principal components factor analysis is employed separately to the two groups of impacts in order to identify underlying dimensions associated with residents’ perceptions on tourism develop- ment. Based on the results of the factor analysis, independent sample t-tests are used to investigate differences regarding positive and negative tourism impacts between residents that live near and far from the historic center, and between residents who work/have worked in the tourism sector and residents that work/ have worked in other sectors.
Resumo:
Nonlinear thermo-mechanical properties of advanced polymers are crucial to accurate prediction of the process induced warpage and residual stress of electronics packages. The Fiber Bragg grating (FBG) sensor based method is advanced and implemented to determine temperature and time dependent nonlinear properties. The FBG sensor is embedded in the center of the cylindrical specimen, which deforms together with the specimen. The strains of the specimen at different loading conditions are monitored by the FBG sensor. Two main sources of the warpage are considered: curing induced warpage and coefficient of thermal expansion (CTE) mismatch induced warpage. The effective chemical shrinkage and the equilibrium modulus are needed for the curing induced warpage prediction. Considering various polymeric materials used in microelectronic packages, unique curing setups and procedures are developed for elastomers (extremely low modulus, medium viscosity, room temperature curing), underfill materials (medium modulus, low viscosity, high temperature curing), and epoxy molding compound (EMC: high modulus, high viscosity, high temperature pressure curing), most notably, (1) zero-constraint mold for elastomers; (2) a two-stage curing procedure for underfill materials and (3) an air-cylinder based novel setup for EMC. For the CTE mismatch induced warpage, the temperature dependent CTE and the comprehensive viscoelastic properties are measured. The cured cylindrical specimen with a FBG sensor embedded in the center is further used for viscoelastic property measurements. A uni-axial compressive loading is applied to the specimen to measure the time dependent Young’s modulus. The test is repeated from room temperature to the reflow temperature to capture the time-temperature dependent Young’s modulus. A separate high pressure system is developed for the bulk modulus measurement. The time temperature dependent bulk modulus is measured at the same temperatures as the Young’s modulus. The master curve of the Young’s modulus and bulk modulus of the EMC is created and a single set of the shift factors is determined from the time temperature superposition. The supplementary experiments are conducted to verify the validity of the assumptions associated with the linear viscoelasticity. The measured time-temperature dependent properties are further verified by a shadow moiré and Twyman/Green test.
Resumo:
In this work, we report a 20-ns constant pressure molecular dynamics simulation of prilocaine (PLC), in amine-amide local anesthetic, in a hydrated liquid crystal bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine. The partition of PLC induces the lateral expansion of the bilayer and a concomitant contraction in its thickness. PLC molecules are preferentially found in the hydrophobic acyl chains region, with a maximum probability at similar to 12 angstrom from the center of the bilayer (between the C(4) and C(5) methylene groups). A decrease in the acyl chain segmental order parameter, vertical bar S-CD vertical bar, compared to neat bilayers, is found, in good agreement with experimental H-2-NMR studies. The decrease in vertical bar S-CD vertical bar induced by PLC is attributed to a larger accessible volume per lipid in the acyl chain region. (C) 2008 Wiley Periodicals, Inc.
Resumo:
In this work, we report a 20-ns constant pressure molecular dynamics simulation of the uncharged form of two amino-amide local anesthetics (LA). etidocaine and prilocaine, present at 1:3 LA:lipid, molar ratio inside the membrane, in the hydrated liquid crystal bilayer phase of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC). Both LAs induced lateral expansion and a concomitant contraction in the bilayer thickness. A decrease in the acyl chain segment order parameter, -S(CD), compared to neat bilayers, was also observed. Besides, both LA molecules got preferentially located in the hydrophobic acyl chains region, with a maximum probability at similar to 12 and similar to 10 angstrom from the center of the bilayer for prilocaine and etidocaine, respectively. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Hypertension is a common condition causing cardio and cerebrovascular complications. Portugal has one of the highest mortality rates from stroke and a high prevalence of hypertension. Systolic Blood Pressure (SBP) is an important risk factor for cardiovascular events (myocardial infarction and stroke) and premature mortality, particularly in the elderly population. The present study aims to estimate the prevalence of hypertension in a Portuguese population living in a coastal city and to identify some of its determinants (namely gender, age, the body mass index and physical activity frequency). A total of 91 adults who attended three pharmacies of a coastal city in the center of Portugal, between May and August of 2013 were evaluated. Attendants who reported to have diabetes or taking antihypertensive drugs in the 2 previous weeks were excluded from the study. Sociodemographic factors, BMI, habits of exercise and BP were assessed. Hypertension was defined as blood pressure ≥140/90 mmHg. The majority of the studied population was constituted by women (75.8%), with a mean age of 54.2±1.6 years old, married or living in civil union and that had completed secondary school or had higher education (40%). They presented a mean BMI of 26.2±4.76 Kg/m2., and were sedentary. The mean BP was 127.0±17.77mmHg- 74.69 ± 9.53. In this population we found 4.3% of people with hypertension and 16.1% with normal high blood pressure. Men exhibit a tendency to present higher systolic blood pressure values than women. Of all the factors considered, SBP values also tended to be higher with age and higher BMI values. Despite the fact that the mean values of SBP did not present values higher than 140 mmHg we must be concerned because the studied population is undiagnosed for hypertension. Although this is a preliminary study, it might be a prelude to the upcoming research about the underlying factors responsible for the occurrence of SBP.
Resumo:
The benefits of prone position ventilation are well demonstrated in the severe forms of acute respiratory distress syndrome, but not in the milder forms. We investigated the effects of prone position on arterial blood gases, lung inflammation, and histology in an experimental mild acute lung injury (ALI) model. ALI was induced in Wistar rats by intraperitoneal Escherichia coli lipopolysaccharide (LPS, 5 mg/kg). After 24 h, the animals with PaO2/FIO2 between 200 and 300 mmHg were randomized into 2 groups: prone position (n = 6) and supine position (n = 6). Both groups were compared with a control group (n = 5) that was ventilated in the supine position. All of the groups were ventilated for 1 h with volume-controlled ventilation mode (tidal volume = 6 ml/kg, respiratory rate = 80 breaths/min, positive end-expiratory pressure = 5 cmH2O, inspired oxygen fraction = 1). Significantly higher lung injury scores were observed in the LPS-supine group compared to the LPS-prone and control groups (0.32 ± 0.03; 0.17 ± 0.03 and 0.13 ± 0.04, respectively) (p < 0.001), mainly due to a higher neutrophil infiltration level in the interstitial space and more proteinaceous debris that filled the airspaces. Similar differences were observed when the gravity-dependent lung regions and non-dependent lung regions were analyzed separately (p < 0.05). The BAL neutrophil content was also higher in the LPS-supine group compared to the LPS-prone and control groups (p < 0.05). There were no significant differences in the wet/dry ratio and gas exchange levels. In this experimental extrapulmonary mild ALI model, prone position ventilation for 1 h, when compared with supine position ventilation, was associated with lower lung inflammation and injury.
Resumo:
Near-infrared polarimetry observation is a powerful tool to study the central sources at the center of the Milky Way. My aim of this thesis is to analyze the polarized emission present in the central few light years of the Galactic Center region, in particular the non-thermal polarized emission of Sagittarius~A* (Sgr~A*), the electromagnetic manifestation of the super-massive black hole, and the polarized emission of an infrared-excess source in the literature referred to as DSO/G2. This source is in orbit about Sgr~A*. In this thesis I focus onto the Galactic Center observations at $\lambda=2.2~\mu m$ ($K_\mathrm{s}$-band) in polarimetry mode during several epochs from 2004 to 2012. The near-infrared polarized observations have been carried out using the adaptive optics instrument NAOS/CONICA and Wollaston prism at the Very Large Telescope of ESO (European Southern Observatory). Linear polarization at 2.2 $\mu m$, its flux statistics and time variation, can be used to constrain the physical conditions of the accretion process onto the central super-massive black hole. I present a statistical analysis of polarized $K_\mathrm{s}$-band emission from Sgr~A* and investigate the most comprehensive sample of near-infrared polarimetric light curves of this source up to now. I find several polarized flux excursions during the years and obtain an exponent of about 4 for the power-law fitted to polarized flux density distribution of fluxes above 5~mJy. Therefore, this distribution is closely linked to the single state power-law distribution of the total $K_\mathrm{s}$-band flux densities reported earlier by us. I find polarization degrees of the order of 20\%$\pm$10\% and a preferred polarization angle of $13^o\pm15^o$. Based on simulations of polarimetric measurements given the observed flux density and its uncertainty in orthogonal polarimetry channels, I find that the uncertainties of polarization parameters under a total flux density of $\sim 2\,{\mathrm{mJy}}$ are probably dominated by observational uncertainties. At higher flux densities there are intrinsic variations of polarization degree and angle within rather well constrained ranges. Since the emission is most likely due to optically thin synchrotron radiation, the obtained preferred polarization angle is very likely reflecting the intrinsic orientation of the Sgr~A* system i.e. an accretion disk or jet/wind scenario coupled to the super-massive black hole. Our polarization statistics show that Sgr~A* must be a stable system, both in terms of geometry, and the accretion process. I also investigate an infrared-excess source called G2 or Dusty S-cluster Object (DSO) moving on a highly eccentric orbit around the Galaxy's central black hole, Sgr~A*. I use for the first time the near-infrared polarimetric imaging data to determine the nature and the properties of DSO and obtain an improved $K_\mathrm{s}$-band identification of this source in median polarimetry images of different observing years. The source starts to deviate from the stellar confusion in 2008 data and it does not show a flux density variability based on our data set. Furthermore, I measure the polarization degree and angle of this source and conclude based on the simulations on polarization parameters that it is an intrinsically polarized source with a varying polarization angle as it approaches Sgr~A* position. I use the interpretation of the DSO polarimetry measurements to assess its possible properties.
Resumo:
Two single crystalline surfaces of Au vicinal to the (111) plane were modified with Pt and studied using scanning tunneling microscopy (STM) and X-ray photoemission spectroscopy (XPS) in ultra-high vacuum environment. The vicinal surfaces studied are Au(332) and Au(887) and different Pt coverage (θPt) were deposited on each surface. From STM images we determine that Pt deposits on both surfaces as nanoislands with heights ranging from 1 ML to 3 ML depending on θPt. On both surfaces the early growth of Pt ad-islands occurs at the lower part of the step edge, with Pt ad-atoms being incorporated into the steps in some cases. XPS results indicate that partial alloying of Pt occurs at the interface at room temperature and at all coverage, as suggested by the negative chemical shift of Pt 4f core line, indicating an upward shift of the d-band center of the alloyed Pt. Also, the existence of a segregated Pt phase especially at higher coverage is detected by XPS. Sample annealing indicates that the temperature rise promotes a further incorporation of Pt atoms into the Au substrate as supported by STM and XPS results. Additionally, the catalytic activity of different PtAu systems reported in the literature for some electrochemical reactions is discussed considering our findings.
Resumo:
Nearly 50% of patients with heart failure (HF) have preserved LV ejection fraction, with interstitial fibrosis and cardiomyocyte hypertrophy as early manifestations of pressure overload. However, methods to assess both tissue characteristics dynamically and noninvasively with therapy are lacking. We measured the effects of mineralocorticoid receptor blockade on tissue phenotypes in LV pressure overload using cardiac magnetic resonance (CMR). Mice were randomized to l-nitro-ω-methyl ester (l-NAME, 3 mg/mL in water; n=22), or l-NAME with spironolactone (50 mg/kg/day in subcutaneous pellets; n=21). Myocardial extracellular volume (ECV; marker of diffuse interstitial fibrosis) and the intracellular lifetime of water (τic; marker of cardiomyocyte hypertrophy) were determined by CMR T1 imaging at baseline and after 7 weeks of therapy alongside histological assessments. Administration of l-NAME induced hypertensive heart disease in mice, with increases in mean arterial pressure, LV mass, ECV, and τic compared with placebo-treated controls, while LV ejection fraction was preserved (>50%). In comparison, animals receiving both spironolactone and l-NAME (l-NAME+S) showed less concentric remodeling, and a lower myocardial ECV and τic, indicating decreased interstitial fibrosis and cardiomyocyte hypertrophy (ECV: 0.43 ± 0.09 for l-NAME versus 0.25 ± 0.03 for l-NAME+S, P<0.001; τic: 0.42 ± 0.11 for l-NAME groups versus 0.12 ± 0.05 for l-NAME+S group). Mice treated with a combination of l-NAME and spironolactone were similar to placebo-treated controls at 7 weeks. Spironolactone attenuates interstitial fibrosis and cardiomyocyte hypertrophy in hypertensive heart disease. CMR can phenotype myocardial tissue remodeling in pressure-overload, furthering our understanding of HF progression.
Resumo:
Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.
Resumo:
We report a combined study of external pressure and Cu-substitution on BaFe2As2 single crystals grown by the in-flux technique. At ambient pressure, the Cu-substitution is known to suppress the spin density wave (SDW) phase in pure BaFe2As2(TSDW ≈ 140 K) and to induce a superconducting (SC) dome with a maximum transition temperature [Formula: see text]. This [Formula: see text] is much lower than the Tc ∼ 15-28 K achieved in the case of Ru, Ni and Co substitutions. Such a lower Tc is attributed to a Cu(2+) magnetic pair-breaking effect. The latter is strongly suppressed by applied pressure, as shown herein, Tc can be significantly enhanced by applying high pressures. In this work, we investigated the pressure effects on Cu(2+) magnetic pair-breaking in the BaFe2-xCuxAs2 series. Around the optimal concentration (xopd = 0.11), all samples showed a substantial increase of Tc as a function of pressure. Yet for those samples with a slightly higher doping level (over-doped regime), Tc presented a dome-like shape with maximum Tc ≃ 8 K. Remarkably interesting, the under-doped samples, e.g. x = 0.02 display a maximum pressure induced Tc ≃ 30 K which is comparable to the maximum Tc's found for the pure compound under external pressures. Furthermore, the magnetoresistance effect as a function of pressure in the normal state of the x = 0.02 sample also presented an evolution consistent with the screening of the Cu(2+) local moments. These findings demonstrate that the Cu(2+) magnetic pair-breaking effect is completely suppressed by applying pressure in the low concentration regime of Cu(2+) substituted BaFe2As2.
Resumo:
The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.