917 resultados para Cells, cultured. Burns
Resumo:
The effect of vitamins C and E on some of growth factors of cultured Acipenser ruthenus was studied in this thesis. For this purpose diets supplemented with a combination of 100 and 400 mg/kg vitamin C, L-ascorbyl-2-polyphosphate and 100 and 400 mg/kg vitamin E, D-alpha-tocopherol,were each fed to sterlet in 2 replications for 15 weeks. Fifteen fish with average weight of 350.92±14.28 gr were distributed to each of 18 tanks after adaptation with experimental diet. After 5 weeks, there were significant differences in RBC, ESR, HCT and differential counting of white blood cells among the treatments (P<0.05), but there was no significant difference in the amount of WBC among the treatments (P>0.05). After 10 weeks, there were significant differences in the amounts of Monocytes, Lymphocytes and Eosinophils (P<0.05), but there was no significant differences in the amount of other hematologic factors (P>0.05). At the end of the experiment (15th week) only WBC, RBC, Monocyte, lymphocyte and neutrophil showed significant differences between the treatments (P<0.05) and other hematologic factors did not show any significant differences between the treatments (P>0.05). The results of biochemical indices analysis showed significant differences (P<0.05) among treatments for all of the parameters for 5th weeks, total protein and glucose for 10th week and only cholesterol for 15th week. The carcass analysis at the end of experiment showed that only the amount of carbohydrate, protein and ash were significantly difference between the treatments (P<0.05). The results of growth parameters at the end of 3th, 9th, 12th and 15th week showed significant differences between the treatments (P<0.05), but at the end of 6th week only GR was significantly different between the treatments (P<0.05). After concerning acute stress test including reduce water volume, cutting the aeration for 30 minutes at the end of experiment, cortisol and glucose significantly increased (P<0.05) compared with prestress period, but the lowest response to the stressor was observed in fish fed by E400 C 400 mg/kg. On the other hand the survival was 100% during the experiment and no mortality was occurred during this period. Results of this study indicate that Vitamins C and E can have remarkable effects on hematological, biochemical and growth indices in different growth periods. So regarding the effects of vitamin C and E on some growth indices, it seems that the diet containing E400 C 100 mg/kg can be considered as the optimum diet in the rearing condition for this weigth range of fish.
Resumo:
One-cell-thick monolayers are the simplest tissues in multicellular organisms, yet they fulfill critical roles in development and normal physiology. In early development, embryonic morphogenesis results largely from monolayer rearrangement and deformation due to internally generated forces. Later, monolayers act as physical barriers separating the internal environment from the exterior and must withstand externally applied forces. Though resisting and generating mechanical forces is an essential part of monolayer function, simple experimental methods to characterize monolayer mechanical properties are lacking. Here, we describe a system for tensile testing of freely suspended cultured monolayers that enables the examination of their mechanical behavior at multi-, uni-, and subcellular scales. Using this system, we provide measurements of monolayer elasticity and show that this is two orders of magnitude larger than the elasticity of their isolated cellular components. Monolayers could withstand more than a doubling in length before failing through rupture of intercellular junctions. Measurement of stress at fracture enabled a first estimation of the average force needed to separate cells within truly mature monolayers, approximately ninefold larger than measured in pairs of isolated cells. As in single cells, monolayer mechanical properties were strongly dependent on the integrity of the actin cytoskeleton, myosin, and intercellular adhesions interfacing adjacent cells. High magnification imaging revealed that keratin filaments became progressively stretched during extension, suggesting they participate in monolayer mechanics. This multiscale study of monolayer response to deformation enabled by our device provides the first quantitative investigation of the link between monolayer biology and mechanics.
Resumo:
Peripheral nerve damage is a problem encountered after trauma and during surgery and the development of synthetic polymer conduits may offer a promising alternative to autografts. In order to improve the performance of the polymer to be used for nerve conduits, poly-ε-caprolactone (PCL) films were chemically functionalized with RGD moieties, using a chemical reaction previously developed. In vitro cultures of dissociated dorsal root ganglion (DRG) neurons provide a valid model to study different factors affecting axonal growth. In this work, DRG neurons were cultured on RGD-functionalized PCL films. Adult adipose-derived stem cells differentiated to Schwann cells (dASCs) were initially cultured on the functionalized PCL films, resulting in improved attachment and proliferation. dASCs were also co-cultured with DRG neurons on treated and untreated PCL to assess stimulation by dASCs on neurite outgrowth. Neuron response was generally poor on untreated PCL films, but long neurites were observed in the presence of dASCs or RGD moieties. A combination of the two factors enhanced even further neurite outgrowth, acting synergistically. Finally, in order to better understand the extracellular matrix (ECM)-cell interaction, a β1 integrin blocking experiment was carried out. Neurite outgrowth was not affected by the specific antibody blocking, showing that β1 integrin function can be compensated by other molecules present on the cell membrane. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
We have investigated whether inkjet printing technology can be extended to print cells of the adult rat central nervous system (CNS), retinal ganglion cells (RGC) and glia, and the effects on survival and growth of these cells in culture, which is an important step in the development of tissue grafts for regenerative medicine, and may aid in the cure of blindness. We observed that RGC and glia can be successfully printed using a piezoelectric printer. Whilst inkjet printing reduced the cell population due to sedimentation within the printing system, imaging of the printhead nozzle, which is the area where the cells experience the greatest shear stress and rate, confirmed that there was no evidence of destruction or even significant distortion of the cells during jet ejection and drop formation. Importantly, the viability of the cells was not affected by the printing process. When we cultured the same number of printed and non-printed RGC/glial cells, there was no significant difference in cell survival and RGC neurite outgrowth. In addition, use of a glial substrate significantly increased RGC neurite outgrowth, and this effect was retained when the cells had been printed. In conclusion, printing of RGC and glia using a piezoelectric printhead does not adversely affect viability and survival/growth of the cells in culture. Importantly, printed glial cells retain their growth-promoting properties when used as a substrate, opening new avenues for printed CNS grafts in regenerative medicine.
Resumo:
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is one of the TNF superfamily members, participating in many biological processes including cell proliferation and apoptotic death. In this study, a TRAIL gene was cloned from a perciform fish, the mandarin fish Siniperca chuatsi, a major cultured fish in China's aquaculture, and is named as SCTRAIL for S. chuatsi TRAIL. The full-length cDNA of SCTRAIL is 1359 bp, encoding a 283-amino-acid protein. This deduced protein contains the CYS231, a 23-mer fragment of transmembrane region, a glycosylation site and a TNF family signature, all of which are conserved among TRAIL members. SCTRAIL gene consists of six exons, with five intervening introns, spaced over approximately 9 kb of genomic sequence. Southern blotting demonstrated that the SCTRAIL gene is present as a single copy in mandarin fish genome. A 620 bp promoter region obtained by genome walking contains a number of putative transcription factor binding sites, such as Oct-1, Sp-1, NF-1, RAP-1, C/EBPaLp, NF-kappa B and AP-1. The SCTRAIL is constitutively expressed in all the analyzed tissues, as revealed by RT-PCR, which is confirmed by Western blotting analysis using polyclonal antibody against bacteria-derived recombinant SCTRAIL protein. As an apoptosis-inducing ligand, the overexpression of SCTRAIL but not the mutant SCTRAIL-C203S in HeLa cells induced changes characteristic of apoptosis, including chromatin condensation, nucleus fragmentation, DNA ladder, and increase of sub-G0/G1 cells in FACS analysis. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Perfluorochemicals (PFCs) are emerging persistent organic pollutants (POPs) and are widely present in the environment, wildlife and humans. Recently, reports have suggested that PFCs may have endocrine-disrupting activities. In the present study, we have developed a non-competitive enzyme-linked immunosorbent assay (ELISA) method to investigate estrogenic activities of selected PFCs using vitellogenin (VTG) induction in primary cultured hepatocytes of freshwater male tilapia (Oreochromis niloticus). Cultured hepatocytes were exposed to various concentrations of perfluorooctanyl sulfonate (PFOS), pentadecafluorooctanoic acid (PFOA), 1H, 1H, 2H, 2H-nonafluoro-1-hexanol (4:2 FTOH), 1H, 1H, 2H, 2H-perfluorooctanol (6:2 FTOH) and 1H, 1H, 2H, 2H-perfluoro-1-decanol (8:2 FTOH) for 48h, while 17 beta-estradiol (E2) and 4-nonylphenol (4-NP) were used as positive controls. A dose-dependent induction of VTG was observed in E2-, 4-NP-, PFOS-, PFOA- and 6:2 FrOH-treated cells, whereas VTG levels remained unchanged in the 4:2 FTOH and 8:2 FTOH exposure groups at the concentrations tested. The estimated 48-h EC50 values for E2,4-NP, PFOS, PFOA and 6:2 FTOH were 4.7 x 10(-7), 7.1 x 10(-6), 1.5 x 10(-5), 2.9 x 10(-5) and 2.8 x 10(-5) M, respectively. In the time-course study, significant VTG induction took place at 24 h (E2), 6 It (4-NP), 48 It (PFOS), 48 It (PFOA), 72 It (4:2 FTOH), 12 h (6:2 FTOH), 72 h (8:2 FTOH), and increased further after 96 It of exposure. Co-exposure to binary mixtures of individual PFCs and E2 for 48 It significantly inhibited E2-induced hepatocellular VTG production in a dose-dependent manner except for 4:2 FTOH. The estimated 48-h IC50 (concentration of a compound that elicits 50% inhibition of maximally E2-induced VTG) values for PFOS, PFOA, 6:2 FTOH and 8:2 FTOH were 3.1 x 10(-7), 5.1 X 10(-7), 1.1 X 10(-6) and 7.5 x 10(-7) M, respectively. In order to further investigate the estrogenic mechanism of PFCs, the hepatocytes were co-exposed to binary mixtures of individual chemicals (E2,4-NP, PFOS, PFOA and 6:2 FTOH) and the known estrogen receptor inhibitor tamoxifen for 48 h; tamoxifen significantly inhibited the ability of these chemicals to stimulate vitellogenesis. The overall results demonstrated that PFOS, PFOA and FTOHs have estrogenic activities and that exposure to a combination of E2 and PFCs produced anti-estrogenic effects. The results of the estrogen receptor inhibition assay further suggested that the estrogenic effect of PFCs may be mediated by the estrogen receptor pathway in primary cultured tilapia hepatocytes. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Polybrominated diphenyl ethers (PBDEs) are an important class of halogenated organic brominated flame retardants. Because of their presence in abiotic and biotic environments widely and their structural similarity to polychlorinated biphenyls (PCBs), concern has been raised on their possible adverse health effects to humans. This study was designed to determine the anti-proliferative, apoptotic properties of decabrominated diphenyl ether (PBDE-209), using a human hepatoma Hep G2 line as a model system. Hep G2 cells were cultured in the presence of PBDE-209 at various concentrations (1.0-100.0 mu mol/L) for 72 h and the percentage of cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results showed that PBDE-209 inhibited the cells viability in time and concentration-dependent characteristics at concentrations (10.0-100.0 mu mol/L). We found that anti-proliferative effect of PBDE-209 was associated with apoptosis on Hep G2 cells by determinations of morphological changes, cell cycle and apoptosis. Mechanism study showed that PBDE-209 could increase the generation of intracellular reactive oxygen species (ROS) concentration-dependently. Antioxidant N-acetylcyteine partially inhibited the increase of ROS. The mechanism for its hepatoma-inhibitory effects was the induction of cellular apoptosis through ROS generation. In addition, activity of lactate dehydrogenase (LDH) release increased when the cells incubated with PBDE-209 at various concentrations and times. These results suggested that PBDE-209 had the toxicity activity of anti-proliferation and induction of apoptosis in tumor cells in vitro. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
From 2001 to 2002, a new and emergent infectious disease of Ophiocephalus argus occurred in a fishery in Hubei Province, China, with an incidence of 60% similar to 70% and a mortality as high as 100 %. The diseased fish showed an enlarged abdomen, the millet-like nodules in internal organs, and the swollen kidney which was composed of 5 similar to 10 sarcoma-like bodies in cream or gray-white colour or ulcerated into beandregs-like substance. Light microscopic observation revealed the basophilic or acidphilic inclusions in cytoplasm of the cells and the granulomas, a diffusive chronic inflammation in internal organs. Further analysis under an electron microscope indicated that the intracytoplasmic inclusions were rickettsia-like organisms (RLOs) that are either spherical or coccoid, with variable size, ranging from 0.5 similar to 1.5 mum in diameter, and enclosed within membrane-bound cytoplasmic vacuoles. RLO had a central nucleoid region with some fine filamentous structures and an electron-dense granule. Its cytoplasm contained abundant ribosomal bodies. Occasionally, RLO appeared to be divided by binary fission. RLOs were also observed in the homogenized tissue of infected fish. The results suggested that the death of cultured O. argus was caused by RLO infection.
Resumo:
The causative agent of lymphocystis disease that frequently occurs in cultured flounder Paralichthys olivaceus in China is lymphocystis virus (LV). In this study, 13 fish cell lines were tested for their susceptibility to LV. Of these, 2 cell lines derived from the freshwater grass carp Ctenopharyngodon idellus proved susceptible to the LV, and 1 cell line, GCO (grass carp ovary), was therefore used to replicate and propagate the virus. An obvious cytopathic effect (CPE) was first observed in cell monolayers at 1 d post-inoculation, and at 3 d this had extended to about 75% of the cell monolayer. However, no further CPE extension was observed after 4 d. Cytopathic characteristics induced by the LV were detected by Giemsa staining and fluorescence microscopic observation with Hoechst 33258 staining. The propagated virus particles were also observed by electron microscopy. Ultrastructure analysis revealed several distinct cellular changes, such as chromatin compaction and margination, vesicle formation, cell-surface convolution, nuclear fragmentation and the occurrence of characteristic 'blebs' and cell fusion. This study provides a detailed report of LV infection and propagation in a freshwater fish cell line, and presents direct electron microscopy evidence for propagation of the virus in infected cells. A possible process by which the CPEs are controlled is suggested.
Resumo:
Chlorella pyrenoidosa was cultured with 350 and 700 p.p.m.v. CO2 at varied levels of light to see the impacts of doubled atmospheric CO2 concentration on its growth and photosynthesis. The CO2 enrichment did not affect the growth rate (mu), but significantly increased the cell density when light was sufficiently supplied. The CO2 enrichment significantly depressed light-saturated photosynthesis and dark respiration in the cells grown under a high-light regime, but not those under a low-light regime. The light-saturating point for photosynthesis and photosynthetic efficiency was not affected by the CO2 enrichment under either the high-light or low-light conditions.
Resumo:
Bighead carp is one of the most important freshwater filter-feeding fish of Chinese aquaculture. In recent decades, there have been a number of contradictory conclusions on the digestibility of algae by bighead carp based on the results from gut contents and digestive enzyme analysis or radiolabelled isotope techniques. Phytoplankton in the gut contents of bighead carp (cultured in a large net cage in Lake Donghu) were studied during March-May. In biomass, the dominant phytoplankters in the fore-gut contents were the centric diatom Cyclotella (average 54.5%, range 33.8-74.3%) and the dinoflagellate Cryptomonas (average 22.8%, range 6.8-55.8%). Phytoplankton in water samples were generally present in proportionate amounts in samples from the fore-guts of bighead carp. The size of most phytoplankton present in the intestine of bighead carp was between 8 and 20 mum in length. Bighead carp was also able to collect particles (as small as 5-6 mum) much smaller than their filtering net meshes, suggesting the importance of mucus in collecting small particles, Examination of the change in the integrity of Cyclotella on passage through the esophagus of bighead carp indicated that disruption of the algal cell walls is principally by the pharyngeal teeth, explaining the previous contradictory conclusions. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A rhabdovirus was found to be associated with a lethal hemorrhagic disease in the cultured Chinese sucker Myxocyprinus asiaticus Bleeker. The rhabdovirus was amplified and isolated from the infected GCO, (grass carp ovary) cells. In ultrathin sections of liver cells from the diseased fish, the virus particles exhibited the characteristic bacilliform morphology, and budded through vesicle membranes of the infected cells. The isolated rhabdovirus particles were found to have a bacilliform morphology with 2 rounded ends rather than a typical flat base. The virus particles were measured and ranged in size from 150 to 200 nm in length and 50 to 60 nm in diameter. Most other characteristics, including their size, extensive virus infectivity to fish cell Lines, strong cytopathogenic effects, stability at high temperatures, vesicle formation in infected cells, structure protein electrophoretic patterns and the presence of an RNA genome, very closely resembled those of other fish rhabdoviruses. At present it is not known if this is a novel virus species or if it is an isolate of a known fish rhabdovirus. Until a confirmed identification can be made, we will temporarily refer to this virus as Chinese sucker rhabdovirus (CSRV).
Resumo:
The relationship between Alexandrium tamarense (Lebour) Balech, one of red-tide alga, and two strains of marine bacteria, Bacillius megaterium(S-7) and B. halmapulus(S-10) isolated from Xiamen Western Sea, was investigated by evaluating the growth state of A. tamarense and the variation of P-glucosidase activity in co-culture system. The results showed the growth and multiplication of the alga were related with the concentration, genus speciality of the bacteria, and growth stage of the alga itself. The growth of A. tamarense was obviously inhibited by S7 and S, at high concentration. Either inhibition or promotion contributed much more clearly in earlier than in later stage of the growth of the alga. Furthermore, there was a roughly similar variation trend of the activity of extra-cellular enzyme, beta-glucosidase, in the water of the separately co-cultured bacteria S-7 and S-10 with the alga. The beta-glucosidase activity (beta-GlcA) rapidly increased during the later algal growth accompanying the increase of the lysis of the alga cells. The obvious inhibition of A. tamarense by marine bacteria at high concentration and evident increase of beta-GlcA in co-colture system would help us in better understanding the relationship between red-tide alga and bacteria, and also enlightened us the possible use of bacteria in the bio-control of red-tide.
Resumo:
Endothelial cell (EC) seeding represents a promising approach to provide a nonthrombogenic surface on vascular grafts. In this study, we used a porcine EC/smooth muscle cell (SMC) coculture model that was previously developed to examine the efficacy of EC seeding. Expression of tissue factor (TF), a primary initiator in the coagulation cascade, and TF activity were used as indicators of thrombogenicity. Using immunostaining, primary cultures of porcine EC showed a low level of TF expression, but a highly heterogeneous distribution pattern with 14% of ECs expressing TF. Quiescent primary cultures of porcine SMCs displayed a high level of TF expression and a uniform pattern of staining. When we used a two-stage amidolytic assay, TF activity of ECs cultured alone was very low, whereas that of SMCs was high. ECs cocultured with SMCs initially showed low TF activity, but TF activity of cocultures increased significantly 7-8 days after EC seeding. The increased TF activity was not due to the activation of nuclear factor kappa-B on ECs and SMCs, as immunostaining for p65 indicated that nuclear factor kappa-B was localized in the cytoplasm in an inactive form in both ECs and SMCs. Rather, increased TF activity appeared to be due to the elevated reactive oxygen species levels and contraction of the coculture, thereby compromising the integrity of EC monolayer and exposing TF on SMCs. The incubation of cocultures with N-acetyl-cysteine (2 mM), an antioxidant, inhibited contraction, suggesting involvement of reactive oxygen species in regulating the contraction. The results obtained from this study provide useful information for understanding thrombosis in tissue-engineered vascular grafts.
Resumo:
Human adipose stem cells (hASCs) can differentiate into a variety of phenotypes. Native extracellular matrix (e.g., demineralized bone matrix or small intestinal submucosa) can influence the growth and differentiation of stem cells. The hypothesis of this study was that a novel ligament-derived matrix (LDM) would enhance expression of a ligamentous phenotype in hASCs compared to collagen gel alone. LDM prepared using phosphate-buffered saline or 0.1% peracetic acid was mixed with collagen gel (COL) and was evaluated for its ability to induce proliferation, differentiation, and extracellular matrix synthesis in hASCs over 28 days in culture at different seeding densities (0, 0.25 x 10(6), 1 x 10(6), or 2 x 10(6) hASC/mL). Biochemical and gene expression data were analyzed using analysis of variance. Fisher's least significant difference test was used to determine differences between treatments following analysis of variance. hASCs in either LDM or COL demonstrated changes in gene expression consistent with ligament development. hASCs cultured with LDM demonstrated more dsDNA content, sulfated-glycosaminoglycan accumulation, and type I and III collagen synthesis, and released more sulfated-glycosaminoglycan and collagen into the medium compared to hASCs in COL (p