985 resultados para Celley, Neil
Resumo:
Cryopreservation of human spermatozoa is extensively used in artifical insemination and IVF programmes. Despite various advances in cryopreservation methodology, the recovery rate of functional post thaw spermatozoa remains mediocre, with sperm motility being significantly decreased after freezing. The aim of this study was to investigate the effects of cryopreservation on both DNA integrity and morphology of spermatozoa from fertile and infertile men. Semen samples were obtained from 17 fertile men and 40 infertile men. All samples were prepared by discontinuous Percoll density centrifugation ( 95.0:47.5). Samples were divided into aliquots to allow direct comparison of fresh and frozen spermatozoa from the same ejaculate. Aliquots for cryopreservation were mixed with a commercial cryoprotectant and frozen by static phase vapour cooling before plunging into liquid nitrogen. Thawing was carried out slowly at room temperature. Sperm DNA integrity was determined using a modified alkaline single cell gel electrophoresis ( comet ) assay and sperm morphology analysed using the Tygerberg criteria. DNA of semen and prepared sperm from fertile men was found to be unaffected by cryopreservation. In marked contrast, spermatozoa from infertile men were significantly damaged by freeze- thawing. Cryopreservation had a detrimental effect on morphology of semen and prepared sperm from fertile and infertile men.
Resumo:
Background: Mitochondria are vital to sperm as their motility powerhouses. They are also the only animal organelles with their own unique genome; encoding subunits for the complexes required for the electron transfer chain. Methods: A modified long PCR technique was used to study mitochondrial DNA (mtDNA) in ejaculated and testicular sperm samples from fertile men (n=11) and testicular sperm from men with obstructive azoospermia (n=25). Nuclear DNA fragmentation was measured by an alkaline single cell gel electrophoresis (COMET) assay. Results: Wild-type mtDNA was detected in only 60% of fertile mens�??�?�¢?? testicular sperm, 50% of their ejaculated sperm and 46% of testicular sperm from men with obstructive azoospermia. The incidence of mitochondrial deletions in testicular sperm of fertile and infertile men was not significantly different but the mean size of the deletions was significantly less in testicular sperm from fertile men compared with men with obstructive azoospermia (p<0.02). Nuclear DNA fragmentation in testicular sperm from fertile men and men with obstructive azoospermia was not significantly different. Conclusion: Multiple mtDNA deletions are common in testicular and ejaculated sperm from both fertile and infertile men. However, in males with obstructive azoospermia the mtDNA deletions in testicular sperm are of a larger scale.
Resumo:
Objective: to determine the incidence of Fas positivity and DNA double stranded breaks (DSB) as indicators of early and late stage apoptosis in ejaculated sperm. Design: Fas positivity was assessed by flow cytometry and DSB by neutral Comet assay Setting: Andrology Laboratory, Royal Maternity Hospita, Belfast Northern Ireland, UK. Patients: 45 infertile men undergoing infertility investigations and 10 fertile men undergoing vasectomies Main Outcome measures: Perecentage Fas positive cells, percentage DNA fragmentation, olive tail moments Results: The apoptotic marker Fas was detected in ejaculated sperm, with a higher incidence of Fas positivity in teratozoospermic and asthenozoospermic than in normozoospermic semen. No Fas positivity was observed in fertile mens’ sperm. DSB were greater in infertile than in fertile mens’ sperm and also greater in sperm in semen than in sperm prepared for assisted conception. There was an inverse relationship between DSB and both sperm concentration and motility. There was no relationship between Fas positivity and DNA damage. Conclusion: Fas was expressed in sperm of infertile men. In contrast, DNA fragmentation was observed in all sperm of fertile and infertile men and correlated with inadequate concentration and motility, which suggests that sperm DSB are ubiquitous and are not solely associated with apoptosis.
Resumo:
BACKGROUND: Male fertility potential cannot be measured by conventional parameters for assisted reproduction by intracytoplasmic sperm injection. This study determines the relationship between testicular and ejaculated sperm mitochondrial (mt) DNA deletions, nuclear (n) DNA fragmentation and fertilisation and pregnancy rates in ICSI. METHODS: Ejaculated sperm were obtained from 77 men and testicular sperm from 28 men with obstructive azoospermia undergoing ICSI. Testicular sperm were retrieved using a Trucut needle. MtDNA analysed using a long polymerase chain reaction. The alkaline Comet assay determined nDNA fragmentation. RESULTS: Of subjects who achieved a pregnancy (50%) using testicular sperm, only 26% had partners�??�?�¢?? sperm with wild type (WT) mtDNA. Of pregnant subjects (38%) using ejaculated sperm, only 8% had partner sperm with WT mtDNA.. In each, the successful group had less mtDNA deletions and less nDNA fragmentation. There were inverse relationships between pregnancy and mtDNA deletion numbers, size and nDNA fragmentation for both testicular and ejaculated sperm. No relationships were observed with fertilisation rates. An algorithm for the prediction of pregnancy is presented based on the quality of sperm nDNA and mtDNA. CONCLUSION: In both testicular and ejaculated sperm, mtDNA deletions and nDNA fragmentation are closely associated with pregnancy in ICSI.