954 resultados para Cell division.
Resumo:
We have investigated the differentiation potential of precursor cells within the developing spinal cord of mice and have shown that spinal cord cells from embryonic day 10 specifically give rise to neurons when plated onto an astrocytic monolayer, Ast-1. These neurons had the morphology of motor neurons and > 83% expressed the motor neuron markers choline acetyltransferase, peripherin, calcitonin gene-related peptide, and L-14. By comparison, < 10% of the neurons arising on monolayers of other neural cell lines or 3T3 fibroblasts had motor neuron characteristics. Cells derived from dorsal, intermediate, and ventral regions of the spinal cord all behaved similarly and gave rise to motor neuron-like cells when plated onto Ast-1. By using cells that expressed the lacZ reporter gene, it was shown that > 93% of cells present on the Ast-1 monolayers were motor neuron-like. Time-lapse analysis revealed that the precursors on the Ast-1 monolayers gave rise to neurons either directly or following a single cell division. Together, these results indicate that precursors in the murine spinal cord can be induced to differentiate into the motor neuron phenotype by factors produced by Ast-1 cells, suggesting that a similar factor(s) produced by cells akin to Ast-1 may regulate motor neuron differentiation in vivo.
Resumo:
Oncogenic signals induce cellular proliferation by deregulating the cell division cycle. Cyclin D1, a regulator of G1-phase progression, acts synergistically with ABL oncogenes in transforming fibroblasts and hematopoietic cells in culture. Synergy with v-Abl depended on a motif in cyclin D1 that mediates its binding to the retinoblastoma protein, suggesting that ABL oncogenes in part mediate their mitogenic effects via a retinoblastoma protein-dependent pathway. Overexpression of cyclin D1, but not cyclin E, rescued a signaling-defective src-homology 2 (SH2) domain mutant of BCR-ABL for transformation of cells in culture and malignant tumor formation in vivo. These results demonstrate that cyclin D1 can provide essential signals for malignant transformation in concert with an activated tyrosine kinase.
Resumo:
H1 histones bind to the linker DNA between nucleosome core particles and facilitate the folding of chromatin into a 30-nm fiber. Mice contain at least seven nonallelic subtypes of H1, including the somatic variants H1a through H1e, the testis-specific variant H1t, and the replacement linker histone H1(0). H1(0) accumulates in terminally differentiating cells from many lineages, at about the time when the cells cease dividing. To investigate the role of H1(0) in development, we have disrupted the single-copy H1(0) gene by homologous recombination in mouse embryonic stem cells. Mice homozygous for the mutation and completely lacking H1(0) mRNA and protein grew and reproduced normally and exhibited no anatomic or histologic abnormalities. Examination of tissues in which H1(0) is normally present at high levels also failed to reveal any abnormality in cell division patterns. Chromatin from H1(0)-deficient animals showed no significant change in the relative proportions of the other H1 subtypes or in the stoichiometry between linker histones and nucleosomes, suggesting that the other H1 histones can compensate for the deficiency in H1(0) by occupying sites that normally contain H1(0). Our results indicate that despite the unique properties and expression pattern of H1(0), its function is dispensable for normal mouse development.
Resumo:
Some growth factors transduce positive growth signals, while others can act as growth inhibitors. Nuclear signaling events of previously quiescent cells stimulated with various growth factors have been studied by isolating the complexed chromatin-associated proteins and chromatin-associated proteins. Signals from the plasma membrane are integrated within the cells and quickly transduced to the nucleus. It is clear that several growth factors, such as epidermal growth factor, transforming growth factor alpha (but not transforming growth factor beta), and platelet-derived growth factor, utilize similar intracellular signaling biochemistries to modulate nucleosomal characteristics. The very rapid and consistent phosphorylation of nuclear p33, p54, and low molecular mass proteins in the range of 15-18 kDa after growth factor stimulation implies that there is a coordination and integration of the cellular signaling processes. Additionally, phosphorylation of p33 and some low molecular mass histones has been found to occur within 5 min of growth factor treatment and to reach a maximum by 30 min. In this study, we report that Neu receptor activating factor also utilizes the same signaling mechanism and causes p33 to become phosphorylated. In addition, both the tumor promoter okadaic acid (which inhibits protein phosphatases 1 and 2A) and phorbol ester (phorbol 12-tetradecanoate 13-acetate) stimulate phosphorylation of p33, p54, and low molecular mass histones. However, transforming growth factor beta, which is a growth inhibitor for fibroblasts, fails to increase p33 phosphorylation. In general, p33 phosphorylation patterns correspond to positive and negative mitogenic signal transduction. p33 isolated from the complexed chromatin-associated protein fraction appears to be a kinase, or tightly associated with a kinase, and shares antigenicity with the cell division cycle-dependent Cdk2 kinase as determined by antibody-dependent analysis. The rapid phosphorylation of nucleosomal proteins may influence sets of early genes needed for the induction and progression of the cell cycle.
Resumo:
The question was addressed whether the risk of cancer of an individual in a heterogeneous population can be predicted on the basis of measurable biochemical and biological variables postulated to be associated with the process of chemical carcinogenesis. Using the skin tumor model with outbred male NMRI mice, the latency time for the appearance of a papilloma was used as an indicator of the individual cancer risk. Starting at 8 weeks of age, a group of 29 mice was treated twice weekly with 20 nmol of 7,12-dimethylbenz[alpha]anthracene (DMBA) applied to back skin. The individual papilloma latency time ranged from 13.5 to 25 weeks of treatment. Two weeks after the appearance of the first papilloma in each mouse, an osmotic minipump delivering 5-bromo-2'-deoxyuridine was s.c. implanted and the mouse was killed 24 hr later. Levels of DMBA-DNA adducts, of 8-hydroxy-2'-deoxyguanosine, and various measures of the kinetics of cell division were determined in the epidermis of the treated skin area. The levels of 8-hydroxy-2'-deoxyguanosine and the fraction of cells in DNA replication (labeling index for the incorporation of 5-bromo-2'-deoxyuridine) were significantly higher in those mice that showed short latency times. On the other hand, the levels of DMBA-DNA adducts were lowest in animals with short latency times. The latter finding was rather unexpected but can be explained as a consequence of the inverse correlation seen for the labeling index: with each round of cell division, the adduct concentration is reduced to 50% because the new DNA strand is free of DMBA adducts until the next treatment. Under the conditions of this bioassay, therefore, oxygen radical-related genotoxicity and the rate of cell division, rather than levels of carcinogen-DNA adducts, were found to be of predictive value as indicators of an individual cancer risk.
Resumo:
Epidemiological evidence indicates that avoidance of smoking, increased consumption of fruits and vegetables, and control of infections will have a major effect on reducing rates of cancer. Other factors include avoidance of intense sun exposure, increases in physical activity, and reduction of alcohol consumption and possibly red meat. A substantial reduction in breast cancer is likely to require modification of sex hormone levels, and development of practical methods for doing so is a high research priority. Resolution of the potential protective roles of specific antioxidants and other constituents of fruits and vegetables deserves major attention. Mechanistic studies of carcinogenesis indicate an important role of endogenous oxidative damage to DNA that is balanced by elaborate defense and repair processes. Also key is the rate of cell division, which is influenced by hormones, growth, cytotoxicity, and inflammation, as this determines the probability of converting DNA lesions to mutations. These mechanisms may underlie many epidemiologic observations.
Resumo:
The cells in most tumors are found to carry multiple mutations; however, based upon mutation rates determined by fluctuation tests, the frequency of such multiple mutations should be so low that tumors are never detected within human populations. Fluctuation tests, which determine the cell-division-dependent mutation rate per cell generation in growing cells, may not be appropriate for estimating mutation rates in nondividing or very slowly dividing cells. Recent studies of time-dependent, "adaptive" mutations in nondividing populations of microorganisms suggest that similar measurements may be more appropriate to understanding the mutation origins of tumors. Here I use the ebgR and ebgA genes of Escherichia coli to measure adaptive mutation rates where multiple mutations are required for rapid growth. Mutations in either ebgA or ebgR allow very slow growth on lactulose (4-O-beta-D-galactosyl-D-fructose), with doubling times of 3.2 and 17.3 days, respectively. However, when both mutations are present, cells can grow rapidly with doubling times of 2.7 hr. I show that during prolonged (28-day) selection for growth on lactulose, the number of lactulose-utilizing mutants that accumulate is 40,000 times greater than can be accounted for on the basis of mutation rates measured by fluctuation tests, but is entirely consistent with the time-dependent adaptive mutation rates measured under the same conditions of prolonged selection.
Resumo:
Previously, researchers have speculated that genetic engineering can improve the long-term function of vascular grafts which are prone to atherosclerosis and occlusion. In this study, we demonstrated that an intraoperative gene therapy approach using antisense oligodeoxynucleotide blockage of medial smooth muscle cell proliferation can prevent the accelerated atherosclerosis that is responsible for autologous vein graft failure. Selective blockade of the expression of genes for two cell cycle regulatory proteins, proliferating cell nuclear antigen and cell division cycle 2 kinase, was achieved in the smooth muscle cells of rabbit jugular veins grafted into the carotid arteries. This alteration of gene expression successfully redirected vein graft biology away from neointimal hyperplasia and toward medial hypertrophy, yielding conduits that more closely resembled normal arteries. More importantly, these genetically engineered grafts proved resistant to diet-induced atherosclerosis. These findings establish the feasibility of developing genetically engineered bioprostheses that are resistant to failure and better suited to the long-term treatment of occlusive vascular disease.
Resumo:
The heterodimeric HU protein, isolated from Escherichia coli, is associated with the bacterial nucleoid and shares some properties with both histones and HMG proteins. It is the prototype of small bacterial DNA binding proteins with a pleiotropic role in the cell. HU participates in several biological processes like cell division, initiation of DNA replication, transposition, and other biochemical functions. We show here that bacteria lacking HU are extremely sensitive to gamma irradiation. Expression of either one of the subunits of HU in the hupAB double mutant nearly restores the normal survival rate. This shows that the sensitivity is due to the absence of HU rather than being the result of a secondary mutation occurring in the hupAB cells or a modification of the SOS repair system, since SOS genes are induced normally in the absence of HU. Finally, in vitro studies give an indication of its potential role: HU protects DNA against cleavage by gamma-rays.
Resumo:
O operon groESL de C. crescentus apresenta dupla regulação. A indução deste operon por choque térmico é dependente do fator sigma de choque térmico σ32. A temperaturas fisiológicas, a expressão de groESL apresenta regulação temporal durante o ciclo celular da bactéria e o controle envolve a proteína repressora HrcA e o elemento CIRCE (controlling inverted repeat of chaperonin expression). Para estudar a atividade da proteína repressora in vitro, produzimos e purificamos de E. coli a HrcA de C. creseentus contendo uma cauda de histidinas e a ligação especifica ao elemento CIRCE foi analisada em ensaios de migração retardada em gel de poliacrilamida (EMRGP). A quantidade de DNA retardada pela ligação a HrcA aumentou significativamente na presença de GroES/GroEL, sugerindo que estas proteínas modulam a atividade de HrcA. Corroboração desta modulação foi obtida analisando fusões de transcrição da região regulatória de groESL com o gene lacZ, em células de C. crescentus produzindo diferentes quantidades de GroES/EL. HrcA contendo as substituições Pro81 AJa e Arg87Ala, aminoácidos que se localizam no domínio putativo de ligação ao DNA da proteína, mostraram ser deficientes na ligação a CIRCE, tanto in vitro como in vivo. Em adição, HrcA Ser56Ala expressa na mesma célula juntamente com a proteína selvagem produziu um fenótipo dominante-negativo, indicando que a HrcA de C. crescentus liga-se a CIRCE como um oligômero, provavelmente um dímero. As tentativas de obtenção de mutantes nulos para os genes groESL ou dnaKJ falharam, indicando que as proteínas GroES/GroEL e DnaK/DnaJ são essenciais em C. crescentus, mesmo a temperaturas normais. Foram então construídas no laboratório as linhagens mutantes condicionais SG300 e SG400 de C. crescentus, onde a expressão de groESL e de dnaKJ, respectivamente, está sob controle de um promotor induzido por xilose (PxyIX). Estas linhagens foram caracterizadas quanto á sua morfologia em condições permissivas ou restritivas, assim como quanto à capacidade de sobrevivência frente a vários tipos de estresse. As células da linhagem SG300, exauridas de GroES/GroEL, são resistentes ao choque térmico a 42°C e são capazes de adquirir alguma termotolerância. Entretanto, estas células são sensíveis aos estresses oxidativo, salino e osmótico. As células da linhagem SG400, exauridas de DnaKlJ, são sensíveis ao choque térmico, à exposição a etanol e ao congelamento, e são incapazes de adquirir termotolerância. Além disso, tanto as células exauridas de GroES/GroEL quanto as exauridas de DnaK/DnaJ apresentam problemas na sua morfologia. As células de SG300 exauridas de GroES/GroEL formam filamentos longos que possuem constrições fundas e irregulares. As células de SG400 exauridas de DnaK/DnaJ são apenas um pouco mais alongadas que as células pré-divisionais selvagens e a maioria das células não possuem septo. Estas observações indicam bloqueio da divisão celular, que deve ocorrer em diferentes estágios em cada linhagem.
Resumo:
Background: Chitosan oligosaccharide (COS), a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results: Three different chemogenomic fitness assays, haploinsufficiency (HIP), homozygous deletion (HOP), and multicopy suppression (MSP) profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms), membrane functions (e.g. signalling, transport and targeting), membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress) and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. Conclusions: Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane trafficking, provides protection against COS-induced cell membrane permeability and damage. We found that the ARL1 COS-resistant over-expression strain was as sensitive to Amphotericin B, Fluconazole and Terbinafine as the wild type cells and that when COS and Fluconazole are used in combination they act in a synergistic fashion. The gene targets of COS identified in this study indicate that COS’s mechanism of action is different from other commonly studied fungicides that target membranes, suggesting that COS may be an effective fungicide for drug-resistant fungal pathogens.
Resumo:
Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, this division may occur throughout almost the entire year. Alternatively, cell division may cease during relatively cool and dry winters, only to resume in the same calendar year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR). A dendrochronological network of Pinus halepensis was used to determine the relationship of MR to ECE. The network consisted of 113 sites, 1,509 trees, 2,593 cores, and 225,428 tree rings throughout the distribution range of the species. A total of 4,150 MR were identified. Binomial logistic regression analysis determined that MR frequency increased with increased cambial age. Spatial analysis indicated that the geographic areas of south-eastern Spain and northern Algeria contained the greatest frequency of MR. Dendroclimatic regression analysis indicated a non-linear relationship of MR to total monthly precipitation and mean temperature. MR are strongly associated with the combination of monthly mean temperature from previous October till current February and total precipitation from previous September till current May. They are likely to occur with total precipitation lower than 50 mm and temperatures higher than 5°C. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a complication for dendrochronology, MR formation is a fundamental response of trees to adverse environmental conditions. The demonstrated relationship of MR formation to ECE across this dendrochronological network in the Mediterranean basin shows the potential of MR analysis to reconstruct the history of past climatic extremes and to predict future forest dynamics in a changing climate.
Resumo:
The centromere is a chromatin-based platform that accumulates microtubule-binding proteins that drive chromosome segregation during cell division. Despite their size (on the order of megabases of DNA in mammals) and conserved role, centromeres have the remarkable capacity to leave their usual comfort zone and to reform at a new chromosomal site (1). Although found rarely, these so-called neocentromeres are by most measures bona fide and segregate chromosomes with high fidelity. What accounts for this nomadic behavior?
Resumo:
All living organisms require accurate mechanisms to faithfully inherit their genetic material during cell division. The centromere is a unique locus on each chromosome that supports a multiprotein structure called the kinetochore. During mitosis, the kinetochore is responsible for connecting chromosomes to spindle microtubules, allowing faithful segregation of the duplicated genome. In most organisms, centromere position and function is not defined by the local DNA sequence context but rather by an epigenetic chromatin-based mechanism. Centromere protein A (CENP-A) is central to this process, as chromatin assembled from this histone H3 variant is essential for assembly of the centromere complex, as well as for its epigenetic maintenance. As a major determinant of centromere function, CENP-A assembly requires tight control, both in its specificity for the centromere and in timing of assembly. In the last few years, there have been several new insights into the molecular mechanism that allow this process to occur. We will review these here and discuss the general implications of the mechanism of cell cycle coupling of centromere inheritance.
Resumo:
Chromatin-based epigenetic inheritance cooperates with cis-acting DNA sequence information to propagate gene expression states and chromosome architecture across cell division cycles. Histone proteins and their modifications are central components of epigenetic systems but how, and to what extent, they are propagated is a matter of continued debate. Centromeric nucleosomes, marked by the histone H3 variant CENP-A, are stable across mitotic divisions and are assembled in a locus specific and cell cycle controlled manner. The mechanism of inheritance of this unique chromatin domain has important implications for how general nucleosome transmission is controlled in space and time.