983 resultados para Cavity perturbation technique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lattice-Boltzmann method (LBM), a promising new particle-based simulation technique for complex and multiscale fluid flows, has seen tremendous adoption in recent years in computational fluid dynamics. Even with a state-of-the-art LBM solver such as Palabos, a user has to still manually write the program using library-supplied primitives. We propose an automated code generator for a class of LBM computations with the objective to achieve high performance on modern architectures. Few studies have looked at time tiling for LBM codes. We exploit a key similarity between stencils and LBM to enable polyhedral optimizations and in turn time tiling for LBM. We also characterize the performance of LBM with the Roofline performance model. Experimental results for standard LBM simulations like Lid Driven Cavity, Flow Past Cylinder, and Poiseuille Flow show that our scheme consistently outperforms Palabos-on average by up to 3x while running on 16 cores of an Intel Xeon (Sandybridge). We also obtain an improvement of 2.47x on the SPEC LBM benchmark.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isospectral beams have identical free vibration frequency spectrum for a specific boundary condition. The problem of finding non-uniform beams which are isospectral to a given uniform beam, with fixed-free boundary condition, leads to a multimodal optimization problem. The first Q natural frequencies of the given uniform Euler-Bernoulli beam are determined using analytical solution. The first Q natural frequencies of a non-uniform beam are obtained with the help of finite element modeling. In order to obtain the non-uniform beams isospectral to a given uniform beam, an error function is designed, which calculates the difference between the spectra of the given uniform beam and the non-uniform beam. In our study, this error function is minimized using electromagnetism inspired optimization technique, a population based iterative algorithm inspired by the attraction-repulsion physics of electromagnetism. Numerical results show the existence of the isospectral non-uniform beams for a given uniform beam, which occur as local minima. Non-uniform beams isospectral to a damaged beam, are also explored using the proposed methodology to illustrate the fact that accurate structural damage identification is difficult by just frequency measurements. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and numerical investigations were carried out using lamb waves to study the degradation in adhesive joints made of carbon fiber reinforced plastic (CFRP) adherends and epoxy adhesive. Degradation was inducted into the epoxy adhesive by adding different amounts of polyvinyl alcohol. Fundamental lamb wave modes were excited in the CFRP adherends using piezoelectric transducer disks and made to propagate through the adhesive layer. The received waveforms across adhesive joints with varied degradation were studied. A 2D finite element model was utilized to verify the experimental results. Good correlation was observed between numerical and experimental results. Details of the investigation and results obtained are presented in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycosylation has been recognized as one of the most prevalent and complex post-translational modifications of proteins involving numerous enzymes and substrates. Its effect on the protein conformational transitions is not clearly understood yet. In this study, we have examined the effect of glycosylation on protein stability using molecular dynamics simulation of legume lectin soybean agglutinin (SBA). Its glycosylated moiety consists of high mannose type N-linked glycan (Man(9)GlcNAc(2)). To unveil the structural perturbations during thermal unfolding of these two forms, we have studied and compared them to the experimental results. From the perspective of dynamics, our simulations revealed that the nonglycosylated monomeric form is less stable than corresponding glycosylated form at normal and elevated temperatures. Moreover, at elevated temperature thermal destabilization is more prominent in solvent exposed loops, turns and ends of distinct beta sheets. SBA maintains it folded structure due to some important saltbridges, hydrogen bonds and hydrophobic interactions within the protein. The reducing terminal GlcNAc residues interact with the protein residues VAL161, PRO182 and SER225 via hydrophobic and via hydrogen bonding with ASN 9 and ASN 75. Our simulations also revealed that single glycosylation (ASN75) has no significant effect on corresponding cis peptide angle orientation. This atomistic description might have important implications for understanding the functionality and stability of Soybean agglutinin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One-dimensional transient heat flow is interpreted as a procession of `macro-scale translatory motion of indexed isothermal surfaces'. A new analytical model is proposed by introducing velocity of isothermal surface in Fourier heat diffusion equation. The velocity dependent function is extracted by revisiting `the concept of thermal layer of heat conduction in solid' and `exact solution' to estimate thermal diffusivity. The experimental approach involves establishment of 1 D unsteady heat flow inside the sample through Step-temperature excitation. A novel self-reference interferometer is utilized to separate a `unique isothermal surface' in time-varying temperature field. The translatory motion of the said isothermal surface is recorded using digital camera to estimate its velocity. From the knowledge of thermo-optic coefficient, temperature of the said isothermal surface is predicted. The performance of proposed method is evaluated for Quartz sample and compared with literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reported values of bandgap of rutile GeO2 calculated by the standard density functional theory within local-density approximation (LDA)/generalized gradient approximation (GGA) show a wide variation (similar to 2 eV), whose origin remains unresolved. Here, we investigate the reasons for this variation by studying the electronic structure of rutile-GeO2 using many-body perturbation theory within the GW framework. The bandgap as well as valence bandwidth at Gamma-point of rutile phase shows a strong dependence on volume change, which is independent of bandgap underestimation problem of LDA/GGA. This strong dependence originates from a change in hybridization among O-p and Ge-(s and p) orbitals. Furthermore, the parabolic nature of first conduction band along X-Gamma-M direction changes towards a linear dispersion with volume expansion. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a straightforward technique to measure the linewidth of a grating-stabilized diode laser system - known as an external cavity diode laser (ECDL) - by beating the output of two independent ECDLs in a Michelson interferometer, and then taking the Fourier transform of the beat signal. The measured linewidth is the sum of the linewidths of the two laser systems. Assuming that the two are equal, we find that the linewidth of each ECDL measured over a time period of 2. s is about 0.3 MHz. This narrow linewidth shows the advantage of using such systems for high-resolution spectroscopy and other experiments in atomic physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current work reports quantitative OH species concentration in the cavity of a trapped vortex combustor (TVC) in the context of mixing and flame stabilization studies using both syngas and methane fuels. Planar laser induced fluorescence (PLIF) measurements of OH radical obtained using a Nd: YAG pumped dye laser are quantified using a flat flame McKenna burner. The momentum flux ratio (MFR), defined as the ratio of the cavity fuel jet momentum to that of the guide vane air stream, is observed to be a key governing parameter. At high MFRs similar to 4.5, the flame front is observed to form at the interface of the fuel jet and the air jet stream. This is substantiated by velocity vector field measurements. For syngas, as the MFR is lowered to similar to 0.3, the fuel-air mixing increases and a flame front is formed at the bottom and downstream edge of the cavity where a stratified charge is present. This trend is observed for different velocities at similar equivalence ratios. In case of methane combustion in the cavity, where the MFRs employed are extremely low at similar to 0.01, a different mechanism is observed. A fuel-rich mixture is now observed at the center of the cavity and this mixture undergoes combustion. On further increase of the cavity equivalence ratio, the rich mixture exceeds the flammability limit and forms a thin reaction zone at the interface with air stream. As a consequence, a shear layer flame at the top of the cavity interface with the mainstream is also observed. The equivalence ratio in the cavity also determines the combustion characteristics in the case of fuel-air mixtures that are formed as a result of the mixing. Overall, flame stabilization mechanisms have been proposed, which account for the wide range of MFRs and premixing in the mainstream as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a macro-level seismic landslide hazard assessment for the entire state of Sikkim, India, based on the Newmark's methodology. The slope map of Sikkim was derived from ASTER Global Digital Elevation Model (GDEM). Seismic shaking in terms of peak horizontal acceleration (PHA) at bedrock level was estimated from deterministic seismic hazard analysis (DSHA), considering point source model. Peak horizontal acceleration at the surface level for the study area was estimated based on nonlinear site amplification technique, considering B-type NEHRP site class. The PHA at surface was considered to induce driving forces on slopes, thus causing landslides. Knowing the surface level PHA and slope angle, the seismic landslide hazard assessment for each grid point was carried out using Newmark's analysis. The critical static factor of safety required to resist landslide for the PHA (obtained from deterministic analysis) was evaluated and its spatial variation throughout the study area is presented. For any slope in the study area, if the in-situ (available) static factor of safety is greater than the static factor of safety required to resist landslide as predicted in the present study, that slope is considered to be safe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Branched Chain Amino Acids (BCAAs) are related to different aspects of diseases like pathogenesis, diagnosis and even prognosis. While in some diseases, levels of all the BCAAs are perturbed; in some cases, perturbation occurs in one or two while the rest remain unaltered. In case of ischemic heart disease, there is an enhanced level of plasma leucine and isoleucine but valine level remains unaltered. In `Hypervalinemia', valine is elevated in serum and urine, but not leucine and isoleucine. Therefore, identification of these metabolites and profiling of individual BCAA in a quantitative manner in body-fluid like blood plasma/serum have long been in demand. H-1 NMR resonances of the BCAAs overlap with each other which complicates quantification of individual BCAAs. Further, the situation is limited by the overlap of broad resonances of lipoprotein with the resonances of BCAAs. The widely used commercially available kits cannot differentially estimate the BCAAs. Here, we have achieved proper identification and characterization of these BCAAs in serum in a quantitative manner employing a Nuclear Magnetic Resonance-based technique namely T-2-edited Correlation Spectroscopy (COSY). This approach can easily be extended to other body fluids like bile, follicular fluids, saliva, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the development and testing of an integrated low-power and low-cost dual-probe heat-pulse (DPHP) soil-moisture sensor in view of the electrical power consumed and affordability in developing countries. A DPHP sensor has two probes: a heater and a temperature sensor probe spaced 3 mm apart from the heater probe. Supply voltage of 3.3V is given to the heater-coil having resistance of 33 Omega power consumption of 330 mW, which is among the lowest in this category of sensors. The heater probe is 40 mm long with 2 mm diameter and hence is stiff enough to be inserted into the soil. The parametric finite element simulation study was performed to ensure that the maximum temperature rise is between 1 degrees C and 5 degrees C for wet and dry soils, respectively. The discrepancy between the simulation and experiment is less than 3.2%. The sensor was validated with white clay and tested with red soil samples to detect volumetric water-content ranging from 0% to 30%. The sensor element is integrated with low-power electronics for amplifying the output from thermocouple sensor and TelosB mote for wireless communication. A 3.7V lithium ion battery with capacity of 1150 mAh is used to power the system. The battery is charged by a 6V and 300 mA solar cell array. Readings were taken in 30 min intervals. The life-time of DPHP sensor node is around 3.6 days. The sensor, encased in 30 mm x 20 mm x 10 mm sized box, and integrated with electronics was tested independently in two separate laboratories for validating as well as investigating the dependence of the measurement of soil-moisture on the density of the soil. The difference in the readings while repeating the experiments was found out to be less than 0.01%. Furthermore, the effect of ambient temperature on the measurement of soil-moisture is studied experimentally and computationally. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The down conversion of radio frequency components around the harmonics of the local oscillator (LO), and its impact on the accuracy of white space detection using integrated spectrum sensors, is studied. We propose an algorithm to mitigate the impact of harmonic downconversion by utilizing multiple parallel downconverters in the system architecture. The proposed algorithm is validated on a test-board using commercially available integrated circuits and a test-chip implemented in a 130-nm CMOS technology. The measured data show that the impact of the harmonic downconversion is closely related to the LO characteristics, and that much of it can be mitigated by the proposed technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of Nb3Sn by bronze technique on single crystals and deformed Nb is studied. The grain boundary diffusion-controlled growth rate is found to be higher for Nb-(0 1 3) than Nb-(0 1 1) because of smaller grain size of Nb3Sn. The difference in grain size is explained with the help of surface energies leading to different nucleation barrier. Significantly finer grains and higher growth rate of the product phase is found for rolled Nb because of available defects acting as potential nucleation sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several reports illustrate the wide range applicability of graphene oxide (GO) in water remediation. However, a few layers of graphene oxide tend to aggregate under saline conditions thereby reducing its activity. The effects of aggregation can be minimized by having a random arrangement of GO layers in a three dimensional architecture. The current study emphasizes the potential benefits of highly porous, ultralight graphene oxide foams in environmental applications. These foams were prepared by a facile and cost effective lyophilization technique. The 3D architecture allowed the direct use of these foams in the removal of aqueous pollutants without any pretreatment such as ultrasonication. Due to its macroporous nature, the foams exhibited excellent adsorption abilities towards carcinogenic dyes such as rhodamine B (RB), malachite green (MG) and acriflavine (AF) with respective sorption capacities of 446, 321 and 228 mg g(-1) of foam. These foams were also further investigated for antibacterial activities against E. coli bacteria in aqueous and nutrient growth media. The random arrangement of GO layers in the porous foam architecture allowed it to exhibit excellent antibacterial activity even under physiological conditions by following the classical wrapping-perturbation mechanism. These results demonstrate the vast scope of GO foam in water remediation for both dye removal and antibacterial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion controlled growth rate of V3Ga in the Cu(Ga)/V system changes dramatically because of a small change in Ga content in Cu(Ga). One atomic percent increase from 15 to 16 leads to more than double the product phase layer thickness and a decrease in activation energy from 255 to 142 kJ/mol. Kirkendall marker experiment indicates that V3Ga grows because of diffusion of Ga. Role of different factors influencing the diffusion rate of Ga and high growth rate of V3Ga are discussed. (C) 2015 Elsevier Ltd. All rights reserved.