981 resultados para Carl August, Grand Duke of Saxe-Weimar-Eisenach, 1757-1828.
Resumo:
Nickel orthosilicate (Ni2SiO4) has been found to decompose into its component binary oxides in oxygen potential gradients at 1373 K. Nickel oxide was formed at the high oxygen potential boundary, while silica was detected at the low oxygen potential side. Significant porosity and fissures were observed near the Ni2SiO4/SiO2 interface and the SiO2 layer. The critical oxygen partial pressure ratio required for decomposition varied from 1.63 to 2.15 as the oxygen pressures were altered from 1.01 ⊠ 105 to 2.7X 10−4 Pa, well above the dissociation pressure of Ni2SiO4. Platinum markers placed at the boundaries of the Ni2SiO4 sample indicated growth of NiO at the higher oxygen potential boundary, without any apparent transport of material to the low oxygen potential side. However, significant movement of the bulk Ni2SiO4 crystal with respect to the marker was not observed. The decomposition of the silicate occurs due to the unequal rates of transport of Ni and Si. The critical oxygen partial pressure ratio required for decomposition is related both to the thermodynamic stability of Ni2SiO4 with respect to component oxides and the ratio of diffusivities of nickel and silicon. Kinetic decomposition of multicomponent oxides, first discovered by Schmalzried, Laqua, and co-workers [H. Schmalzried, W. Laqua, and P. L. Lin, Z. Natur Forsch. Teil A 34, 192 (1979); H. Schmalzried and W. Laqua, Oxid. Met. 15, 339 (1981); W. Laqua and H. Schmalzried, Chemical Metallurgy—A Tribute to Carl Wagner (Metallurgical Society of the AIME, New York, 1981), p. 29] has important consequences for their use at high temperatures and in geochemistry.
Resumo:
The present study combines field and satellite observations to investigate how hydrographical transformations influence phytoplankton size structure in the southern Bay of Bengal during the peak Southwest Monsoon/Summer Monsoon (July-August). The intrusion of the Summer Monsoon Current (SMC) into the Bay of Bengal and associated changes in sea surface chemistry, traceable eastward up to 90 degrees E along 8 degrees N, seems to influence biology of the region significantly. Both in situ and satellite (MODIS) data revealed low surface chlorophyll except in the area influenced by the SMC During the study period, two well-developed cydonic eddies (north) and an anti-cyclonic eddy (south), closely linked to the main eastward flow of the SMC, were sampled. Considering the capping effect of the low-saline surface water that is characteristic of the Bay of Bengal, the impact of the cyclonic eddy, estimated in terms of enhanced nutrients and chlorophyll, was mostly restricted to the subsurface waters (below 20 m depth). Conversely, the anti-cyclonic eddy aided by the SMC was characterized by considerably higher nutrient concentration and chlorophyll in the upper water column (upper 60 m), which was contrary to the general characteristic of such eddies. Albeit smaller phytoplankton predominated the southern Bay of Bengal (60-95% of the total chlorophyll), the contribution of large phytoplankton was double in the regions influenced by the SMC and associated eddies. Multivariate analysis revealed the extent to which SMC-associated eddies spatially influence phytoplankton community structure. The study presents the first direct quantification of the size structure of phytoplankton from the southern Bay of Bengal and demonstrates that the SMC-associated hydrographical ramifications significantly increase the phytoplankton biomass contributed by larger phytoplankton and thereby influence the vertical opal and organic carbon flux in the region. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Annual cycles of relative abundance are described for phytoplankton species collected from Monterey Bay, California, from July 1974 to June 1976, and the population dynamics related to the annual hydrographic cycle. Neritic diatom species dominated the population during the Upwelling and Oceanic periods, with dinoflagellate species becoming numerically more important during the Davidson period. Recurrent species groups identified using Fager's regroup analysis revealed the presence of a large neritic group of overwhelming numerical importance. This group is composed of indigenous species and is present in the bay during most of the year. Conspicuous changes in the phytoplankton population occurred predominantly among species within this group. During the Davidson period, the advection of southern waters into the bay may temporarily displace the endemic species with dinoflagellates becoming numerically more important. A red tide bloom of Gonyaulax polyedra occurred during this period in 1974, which dominated the phytoplankton population for a period of six weeks. The population dynamics of two hydrographically different stations were compared. A station located over the deep waters of the submarine canyon exhibited much lower phytoplankton standing stocks than a station located over the shelf area in the south of the bay, but seasonal changes in relative abundance and species composition were similar. Physical and chemical differences observed between the two stations appear to be the result of the presence of more recently upwelled water in the canyon area, and higher biological utilization in the south of the bay. A close correlation of species diversity with the depth of the mixed layer was observed, with diversity rising with the shoaling of the thermocline. It is suggested that this may reflect the introduction of new species from below the thermocline into the mixed layer as a result of upwelling activity. It is also suggested that this may be an artifact due to sampling problems associated with internal waves. (Document contains 100 pages.)
Resumo:
The following decriptions [sic] of new forms of Microlepidoptera are published in advance of proposed papers, dealing with the lepidopterous fauna of Panama as a whole, based on material collected by the writer as a member of the Smithsonian Biological Survey of the Panama Canal Zone during the first half of the year 1911. ... (PDF contains 13 pages)
Resumo:
This work is mainly intended as an addition to the studies of the populations dynamics of Cyclops scutifer, which is part of the ”Latn ja jaure project” (a study of the principles involved in the ecosystem of a small -initially fish free- mountain lake, before and after the introduction of fish). The field work consisted of sampling in Lake Erken in Roslagen in June, July and September, as well as in Latn ja jaure in the Abisko mountains in August and September of 1965. Additional sampling was done in Latn ja jaure for the study of the horizontal, vertical and temporal distribution of Cyclops scutifer, as well as the in situ development of the different stages. These samples have been analysed in such a way as to fit into the frame work of future studies on the population dynamics of Cyclops scutifer, The main aim of the present investigation is the determination of the dependence upon tempera- tare of the development of the embryo in the subarctic Cyclops scutifer as compared with the conditions found in the warm water species Mesocyclops leuckarti.
Resumo:
The cephalopod resources of Venezuela are reviewed, based on previous literature and observations from commercial catches. The history of the squid and octopus fishery in the major fishing grounds is presented along with information on the catches and seasonality. Squids are landed in Venezuela throughout the year, with a high in February when most of the catch consists of the arrow squid, Doryteuthis plei. Octopus, Octopus vulgaris, is abundant in the catches from June until October, with a peak in August-September. Methods of handling, processing, and marketing the cephalopod catch are discussed, and correctional guidelines are given. At present, the fishery is in disarray and there is an urgent need for study of Venezuela's commercial cephalopods.
Resumo:
Marine microalgae support world fisheries production and influence climate through various mechanisms. They are also responsible for harmful blooms that adversely impact coastal ecosystems and economies. Optimal growth and survival of many bloom-forming microalgae, including climatically important dinoflagellates and coccolithophores, requires the close association of specific bacterial species, but the reasons for these associations are unknown. Here, we report that several clades of Marinobacter ubiquitously found in close association with dinoflagellates and coccolithophores produce an unusual lower-affinity dicitrate siderophore, vibrioferrin (VF). Fe-VF chelates undergo photolysis at rates that are 10–20 times higher than siderophores produced by free-living marine bacteria, and unlike the latter, the VF photoproduct has no measurable affinity for iron. While both an algal-associated bacterium and a representative dinoflagellate partner, Scrippsiella trochoidea, used iron from Fe-VF chelates in the dark, in situ photolysis of the chelates in the presence of attenuated sunlight increased bacterial iron uptake by 70% and algal uptake by >20-fold. These results suggest that the bacteria promote algal assimilation of iron by facilitating photochemical redox cycling of this critical nutrient. Also, binary culture experiments and genomic evidence suggest that the algal cells release organic molecules that are used by the bacteria for growth. Such mutualistic sharing of iron and fixed carbon has important implications toward our understanding of the close beneficial interactions between marine bacteria and phytoplankton, and the effect of these interactions on algal blooms and climate.
Resumo:
In August and September of 1997 and 1998, we used SCUBA techniques to surgically implant Vemco V16 series acoustic transmitters in 6 greenspotted rockfish (Sebastes chlorostictus) and 16 bocaccio (S. paucispinis) on the flank of Soquel Canyon in Monterey Bay, California. Fish were captured at depths of 100–200 m and reeled up to a depth of approximately 20 m, where a team of SCUBA divers anesthetized and surgically implanted acoustic transmitters in them. Tagged fish were released on the seafloor at the location of catch. An array of recording receivers on the seafloor enabled the tracking of horizontal and vertical fish movements for a three-month period. Greenspotted rockfish tagged in 1997 exhibited almost no vertical movement and showed limited horizontal movement. Two of these tagged fish spent more than 90% of the time in a 0.58-km2 area. Three other tagged greenspotted rockfish spent more than 60% of the time in a 1.6-km2 area but displayed frequent horizontal movements of at least 3 km. Bocaccio exhibited somewhat greater movements. Of the 16 bocaccio tagged in 1998, 10 spent less than 10% of the time in the approximately 12-km2 study area. One fish stayed in the study area for about 50% of the study time. Signals from the remaining 5 fish were recorded in the study area the entire time. Bocaccio frequently moved vertically 10–20 m and occasionally displayed vertical movements of 100 m or greater.
Evidence of host specificity and congruence between phylogenies of bitterling and freshwater mussels
Resumo:
Evidence of host specificity and congruence between phylogenies of bitterling and freshwater mussels. Zoological Studies 45(3): 428-434. Bitterling (Cyprinidae: Acheilognathinae) are freshwater fishes with a unique spawning relationship with freshwater mussels on whose gills they lay their eggs. During the breeding season of bitterling fishes, we collected 843 mussels belonging to 16 species from Lake Qinglan, central China and examined their gill chambers for the presence of bitterling larvae. Three species of bitterling larvae were identified; Acheilognathus tonkinensis, Ach. cf. meridianus, and Ach. barbatulus, in 3 species of mussel: Unio douglasiae, Lamprotula caveata, and L. tortuosa, suggesting host specialization. Using our own and other published data, we compared the respective phylogenies of bitterling and mussels, but failed to show clear congruence. However, broad specializations are evident, with Acheilognathus and Tanakia showing preferences for mussels with a relatively simple gill structure (Ableminae), and Rhodeus spp. showing preferences for mussels of the Anodontinae and Unioninae, which have more-complex gill structures.
Resumo:
Thus far, grassland ecosystem research has mainly been focused on low-lying grassland areas, whereas research on high-altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai-Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37 degrees 36'N, 101 degrees 18'E; 325 above sea level [a. s. l.]) on the Qinghai-Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (R-eco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were -58.5 and -75.5 g C m(-2), respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4-5 g C m(-2) day(-1)) each of the 2 years. Also, the integrated night-time NEE reached comparable peak values (1.5-2 g C m(-2) day(-1)) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, R-eco was an exponential function of soil temperature, but with season-dependent values of Q(10). The temperature-dependent respiration model failed immediately after rain events, when large pulses of R-eco were observed. Thus, for this alpine shrubland in Qinghai-Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem R-eco and NEE.
Resumo:
This study was undertaken to investigate the general biology, including the reproductive cycle and health status, of two clam taxa in Irish waters, with particular reference to the Irish Sea area. Monthly samples of the soft shell clam, Mya arenaria, were collected from Bannow Bay, Co. Wexford, Ireland, for sixteen months, and of the razor clam, Ensis spp. from the Skerries region (Irish Sea) between June 2010 and September 2011. In 2010, M. arenaria in Bannow Bay matured over the summer months, with both sexes either ripe or spawning by August. The gonads of both sexes of E. siliqua developed over autumn and winter 2010, with the first spawning individuals being recorded in January 2011. Two unusually cold winters, followed by a warmer than average spring, appear to have affected M. arenaria and E. siliqua gametogenesis at these sites. It was noted that wet weight of E. siliqua dropped significantly in the summer of both 2010 and 2011, after spawning, which may impact on the economic viability of fishing during this period. Additional samples of M. arenaria were collected at Flaxfort (Ireland), and Ensis spp. at Oxwich (Wales), and the pathology of all clams was examined using both histological and molecular methods. No pathogenic conditions were observed in M. arenaria while Prokaryote inclusions, trematode parasites, Nematopsis spp. and inflammatory pathologies were observed at low incidences in razor clams from Ireland but not from Wales; the first time these conditions have been reported in Ensis spp. in northern European waters. Mya arenaria from sites in Europe and eastern and western North America were investigated for genetic variation using both mitochondrial (cytochrome oxidase I (COI) and 16S ribosomal RNA genes) and nuclear markers (10 microsatellite loci). Both mitochondrial CO1 and all nuclear markers showed reduced levels of variation in certain European samples, with significant differences in haplotype and allelic composition between most samples, particularly those from the two different continents, but with the same common haplotypes or alleles throughout the range. The appearance of certain unique rare haplotypes and microsatellite alleles in the European samples suggest a complicated origin involving North American colonization but also possible southern European Pleistocene refugia. Specimens of Ensis spp. were obtained from five coastal areas around Ireland and Wales and species-specific PCR primers were used to amplify the internal transcribed spacer region 1 (ITS1) and the mitochondrial DNA CO1 gene and all but 15 razor clams were identified as Ensis siliqua. Future investigations should focus on continued monitoring of reproductive biology and pathology of the two clam taxa (in particular, to assess the influence of environmental change), and on genetics of southern European M. arenaria and sequencing the CO1 gene in Ensis individuals to clarify species identity