917 resultados para Carcinoma ductal in situ
Resumo:
Aim:
The distribution of the Lusitanian flora and fauna, species which are found only in southern and western Ireland and in northern Spain and Portugal but which are absent from intervening countries, represents one of the classic conundrums of biogeography. The aim of the present study was to determine whether the distribution of the Lusitanian plant species Daboecia cantabrica was due to persistence in separate Irish and Iberian refugia, or has resulted from post-glacial recolonization followed by subsequent extinction of intervening populations.
Location:
Northern Spain and Co. Galway, western Ireland.
Methods:
Palaeodistribution modelling using Maxent was employed to identify putative refugial areas for D. cantabrica at the Last Glacial Maximum (LGM). Phylogeographical analysis of samples from 64 locations in Ireland and Spain were carried out using a chloroplast marker (atpB–rbcL), the nuclear ITS region, and an anonymous nuclear single-copy locus.
Results:
The palaeodistribution model indicated areas with a high probability of survival for D. cantabrica at the LGM off the western coast of Galicia in Spain, and in the Bay of Biscay. Spanish populations exhibited substantially higher genetic diversity than Irish populations at all three loci, as well as geographical structuring of haplotypes within Spain consistent with divergence in separate refugia. Spanish populations also exhibited far more endemic haplotypes. Divergence time between Irish and Spanish populations associated with the putative Biscay refugium was estimated as 3.333–32 ka.
Main conclusions:
Our data indicate persistence by D. cantabrica throughout the LGM in two separate southern refugia: one in western Galicia and one in the area off the coast of western France which now lies in the Bay of Biscay. Spain was recolonized from both refugia, whilst Ireland was most likely recolonized from the Biscay refugium. On the balance of evidence across the three marker types and the palaeodistribution modelling, our findings do not support the idea of in situ survival of D. cantabrica in Ireland, contrary to earlier suggestions. The fact that we cannot conclusively rule out the existence of a small, more northerly refugium, however, highlights the need for further analysis of Lusitanian plant species.
Resumo:
We have demonstrated that pure cultures of Bacteroides fragilis can be riboprobed with the oligoprobes BAC303 and EUB338, whilst simultaneously immunolabelled with either the mAb QUBF7, or polyclonal antiserum specific for a common antigen of B. fragilis. We were also able to distinguish between pure cultures of B. fragilis and Escherichia coli, by means of combined immunolabelling and riboprobing. The success of the combined technique is critically dependent on the size of the bacterial capsules, bacterial growth phase, antibody diluent and the length of the washing steps. The combined FISH and immunolabelling of bacteria has potential applications in studies of bacteria of medical and veterinary importance, as well as bacteria from other environments, as it yields information about both the identity and antigen expression of individual bacterial cells.
Resumo:
Investigation of the triclabendazole (TCBZ) resistance status of populations of Fasciola hepatica in field cases of fasciolosis, where treatment failure has been reported, can be supported by histological examination of flukes collected from recently treated hosts. In TCBZ-sensitive flukes (TCBZ-S) exposed to TCBZ metabolites for 1-4. days in vivo, but not in TCBZ-resistant flukes (TCBZ-R), morphological changes suggestive of apoptosis occur in cells undergoing meiosis or mitosis in the testis, ovary and vitelline follicles. In order to verify or refute the contention that efficacy of TCBZ treatment is associated with apoptosis in the reproductive organs of flukes, histological sections of TCBZ-S (Cullompton isolate) flukes and TCBZ-R (Sligo isolate) flukes were subjected to the TdT-mediated dUDP nick end labelling (TUNEL) in situ hybridisation method, a commercially available test specifically designed to label endonuclease-induced DNA strand breaks associated with apoptosis. Additionally, sections of in vivo-treated and untreated flukes originating from field outbreaks of suspected TCBZ-S and TCBZ-R fasciolosis were labelled by the TUNEL method. It was found that in treated TCBZ-S flukes, strong positive labelling indicating apoptosis was associated with morphologically abnormal cells undergoing mitosis or meiosis in the testis, ovary and vitelline follicles. Background labelling in the positive testis sections was attributed to heterophagy of cell debris by the sustentacular tissue. The triggering of apoptosis was probably related to failure of spindle formation at cell division, supporting the contention that TCBZ inhibits microtubule formation. In treated TCBZ-R (Sligo Type 1) flukes, and in treated flukes from field outbreaks of suspected TCBZ-R fasciolosis, no significant labelling was observed, while sections of fluke derived from a field case of fasciolosis where TCBZ resistance was not suspected were heavily labelled. Light labelling was associated with the testis of untreated Cullompton (TCBZ-S) and Sligo Type 2 (TCBZ-R) flukes, which exhibit abnormal spermatogenesis and spermiogenesis, respectively. This was attributed to apoptosis and to heterophagy of effete germ line cells by the sustentacular tissue. It is concluded that demonstration of apoptosis by in situ hybridisation using the TUNEL method on sections of 1-4. days in vivo TCBZ-treated F. hepatica can contribute to the diagnosis of TCBZ resistance in field outbreaks of fasciolosis. © 2012 Elsevier B.V.
Resumo:
A Cu/ZnO/Al2O3 commercial catalyst for methanol synthesis from syngas was investigated under operational conditions. HERFD XAS and EXAFS data were recorded under different reaction gas mixtures, temperatures, and pressures. Activation of the catalyst precursor occurred via a Cu+ intermediate. The active catalyst predominantly consists of metallic Cu and ZnO. Methanol production only starts when all accessible Cu is reduced. The structure of the active catalyst did not change with temperature or pressure even though the methanol yield changed strongly. Formation of a carbon-containing layer on top of the catalyst surface was detected by TPD, which was correlated with a several-hour induction period in the methanol production after the catalyst reduction.
Resumo:
We report the combined studies of density functional theory (DFT) calculations and electrochemical in situ FTIR spectroscopy on surface oxidants and mechanisms of CO oxidation at the Ru(0001) electrodes. It is shown that CO can co-adsorb with both O and OH species at lower potential region where a low coverage of the (2 x 2)-O/OH adlayer formed; the oxidation of CO adsorbates takes place at higher potentials where a high coverage of the (1 x 1)-O/OH adlayer formed. Surface O species are not the active oxidants under all coverages studied, due to the high reaction barriers between CO and O (>1 eV). However, surface OH species with higher coverage are identified as the active oxidants, and CO oxidation takes place via a two-steps' mechanism of CO + 3OH -> COOH + 2OH -> CO2 + H2O + OH, in which three nearby OH species are involved in the CO2 formation: CO reacts with OH, forming COOH; COOH then transfers the H to a nearby OH to form H2O and CO2, at the same time, another H in the H2O transfers to a nearby OH to form a weak adsorbed H2O and a new OH. The reaction barrier of these processes is reduced significantly to around 0.50 eV. These new results not only provide an insight into surface active oxidants on Ru, which is directly relevant to fuel cell catalysis, but also reveals the extra complexity of catalytic reactions taking place at solid/liquid electrochemical interface in comparison to the relatively simpler ones at solid/gas phase.
Resumo:
The flexibility of the metal-organic framework Cu-2(OH)(C8H3O7S)(H2O)center dot 2H(2)O (Cu-SIP-3) toward reversible single-crystal to single-crystal transformations is demonstrated using in situ diffraction methods at variable temperature. At temperatures below a dehydration-induced phase transition (T < 370 K) the structure is confirmed as being hydrated. In the temperature range where the transition takes place (370 K < T < 405 K) no discrete, sharp Bragg peaks can be seen in the single-crystal X-ray diffraction pattern, indicating significant loss of long-range order. At temperatures higher than 405 K, the Bragg peaks return and the structure can be refined as dehydrated Cu-SIP-3. The loss of guest water molecules can be followed at temperatures below the phase transition giving insight into the mechanism of the dehydration. Addition of nitric oxide gas to the material above the gating opening pressure of 275 mbar also leads to loss of Bragg scattering in the diffraction pattern.
Resumo:
A new method to spatially probe heterogeneous catalysed reactions within a packed bed of catalyst has been developed. The spatial resolution is achieved using a stationary perforated capillary coupled to a mass spectrometer while the catalyst bed is moved. The oxidation of CO promoted by H-2 over a Pd catalyst has been used to demonstrate the technique.
Resumo:
This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 mu m (O.D.) thermocouple has been inserted in a 250 mu m (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.
Resumo:
Electrochemically modified ethylene oxidation over a PI film supported on the Na+ ion conductor beta '' alumina has been studied over a range of conditions encompassing both promotion and poisoning, The system exhibits reversible behavior, and the data are interpreted in terms of (i) Na-enhanced oxygen chemisorption and (ii) poisoning of the surface by accumulation of Na compounds. At low Na coverages the first effect results in increased competitive adsorption of oxygen at the expense of ethylene, resulting in an increased rate, At very negative catalyst potentials (high Na coverage) both effects operate to poison the system: the increased strength of the Pt-O bond and coverage of the catalytic surface by compounds of Na strongly suppress the rate, Kinetic and spectroscopic results for ethylene oxidation over a Pt(111)-Na model catalyst shed light on important aspects of the electrochemically controlled system, Low levels of Na promote the reaction and high levels poison it, mirroring the behavior observed under electrochemical control and strongly suggesting that sodium pumped from the solid electrolyte is the key species, XP and Auger spectra show that under reaction conditions, the sodium exists as a surface carbonate. Post-reaction TPD spectra and the use of (CO)-C-13 demonstrate that CO is formed as a stable reaction intermediate, The observed activation energy (56 +/- 3 kJ/mol) is similar to that measured for CO oxidation under comparable conditions, suggesting that the rate limiting step is CO oxidation. (C) 1996 Academic Press, Inc.
Resumo:
DGT (diffusive gradients in thin-films) has been proposed as a tool for predicting Cd concentrations in rice grain, but there is a lack of authenticating data. To further explore the relationship between DGT measured Cd and concentrations in rice cultivated in challenging, metal degraded, field locations with different heavy metal pollutant sources, 77 paired soil and grain samples were collected in Southern China from industrial zones, a "cancer village" impacted by mining waste and an organic farm. In situ deployments of DGT in flooded paddy rice rhizospheres were compared with a laboratory DGT assay on dried and rewetted soil. Total soil concentrations were a very poor predictor of plant uptake. Laboratory and field deployed DGT assays and porewater measurements were linearly related to grain concentrations in all but the most contaminated samples where plant toxicity occurred. The laboratory DGT assay was the best predictor of grain Cd concentrations, accommodating differences in soil Cd, pollutant source, and Cd:Zn ratios. Field DGT measurements showed that Zn availability in the flooded rice rhizospheres was greatly diminished compared to that of Cd, resulting in very high Cd:Zn ratios (0.1) compared to commonly observed values (0.005). These results demonstrate the potential of the DGT technique to predict Cd concentrations in field cultivated rice and demonstrate its robustness in a range of environments. Although, field deployments provided important details about in situ element stoichiometry, due to the inherent heterogeneity of the rice rhizosphere soils, deployment of DGT in dried and homogenized soils offers the best possibility of a soil screening tool.
Resumo:
Ovarian cancer is a leading cause of gynaecological cancer-related morbidity and mortality. There has been increasing interest in the potential utility of anti-human epidermal growth factor receptor 2 (anti-HER2) agents in the treatment of this disease, with the attendant need to identify suitable predictive biomarkers of response to treatment.
Resumo:
Determination of HER2 protein expression by immunohistochemistry (IHC) and genomic status by fluorescent in situ hybridisation (FISH) are important in identifying a subset of high HER2-expressing gastric cancers that might respond to trastuzumab. Although FISH is considered the standard for determination of HER2 genomic status, brightfield ISH is being increasingly recognised as a viable alternative. Also, the impact of HER2 protein expression/genomic heterogeneity on the accuracy of HER2 testing has not been well studied in the context of gastric biopsy samples.