947 resultados para Calor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O item não apresenta o texto completo, pois está passando por revisão editorial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O item não apresenta o texto completo, pois está passando por revisão editorial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apresenta a definição e revisão de alguns conceitos básicos sobre termodinâmica aplicada: sistema termodinâmico e volume de controle, exemplo de sistemas abertos, fechados, isolados e volume de controle; estado e propriedades de uma substância – fases (sólida, líquida ou gasosa), propriedades termodinâmicas extensivas e intensivas com apresentação de exemplos, definição de propriedade específica; Equilíbrio termodinâmico, processos e ciclos; energia potencial, cinética e interna; definições de calor e trabalho; lei da conservação da energia; definição e exemplo de cálculo de pressão; pressão manométrica, pressão absoluta, pressão manométrica; temperatura, lei zero da termodinâmica, equilíbrio térmico; descrição das unidades das grandezas físicas envolvidas nos processos – Sistema Internacional de Unidades (SI).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apresenta a definição e aplicação dos principais conceitos relacionados aos balanços de energia (Primeira Lei da Termodinâmica) para sistemas fechados e abertos, discutindo todos os tipos de energia que neles são incluídos. Descreve o experimento de Joule. Demonstra como estes sistemas interagem com as vizinhanças, trocando energia nas formas de calor e trabalho. Discute simplificações dos balanços de energia para processos com uma variável termodinâmica constante (p, v ou T) e processos que ocorrem com gases ideais. Posteriormente, apresenta correlações para o cálculo de capacidades caloríficas e calores latentes de vaporização, e também como usá-las nos cálculos de variação de entalpia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho tem por objectivo desenvolver eimplementar metodologias relacionadas com a temática de térmica de edifícos, no sentido dequantificar e optimizar as perdas e ganhos decalor e os consumos de energia associados aosedifícios. Com base na teoria de transferência de calor e massa, foram construídos programas de cálculo numérico para simular, em regime estacionário (permanente) e não estacionário (transiente), os fluxos de calor e a distribuição das temperaturas em diferentes tipos de paredes comummente encontradas em Portugal e em particular na Região Autónoma da Madeira. Estes resultados permitiram analisar a eficácia dos diversos tipos de paredes estudadas bem como o risco de condensação em algumas dessas situações. Para além deste estudo houve a preocupação de desenvolver uma metodologia de análise económica relacionada com a espessura de isolamento a aplicar. Foram igualmente estudadas algumas medições simples de conservação de energia cuja implementação em edifícios será facilmente ustificada atendendo aos baixos períodos de retorno de investimento geralmente associados a estas medidas. Como resultado deste trabalho foi desenvolvida uma ferramenta de cálculo cuja aplicaçãovai permitir não só estimar o risco decondensação mas igualmente o campo de temperaturas no interior das paredes ao longo do período de tempo considerado, visando a optimização de soluções de isolamento térmico versus condições de conforto recomendadas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A importância dos vãos envidraçados deve-se não só à sua contribuição para o isolamento térmico da habitação, mas também, por permitirem obter uma otimização dos ganhos solares, maximizando-os no inverno e minimizando-os no verão, contribuindo deste modo para a melhoria das condições de conforto e diminuição dos consumos energéticos. Sendo os vãos envidraçados elementos bastante favoráveis às trocas de calor, tornase necessário conhecer de que forma as diferentes soluções envidraçadas existentes no mercado, e proteções solares/oclusão noturna, podem influenciar o desempenho térmico dos edifícios. Com a crescente tendência de utilização do vidro na construção torna-se ainda mais importante uma escolha criteriosa das soluções para os vãos envidraçados. Este trabalho contribui para a avaliação da influência do tipo de envidraçados e da inércia térmica dos materiais, na prevenção de situações de sobreaquecimento no verão, com base no RCCTE (Regulamento das Características de Comportamento Térmico dos Edifícios), bem como para identificar a melhor relação custo/benefício das soluções. Como caso de estudo, considerou-se uma moradia unifamiliar, simulando diferentes soluções envidraçadas e analisado o seu impacto na moradia. A metodologia consistiu numa análise paramétrica e económica, sustentada no RCCTE e direcionada para a influência dos envidraçados na prevenção do sobreaquecimento no verão. Para a análise da viabilidade económica das soluções propostas, recorreu-se à metodologia definida pela ADENE (Agência para a Energia), pelo cálculo dos custos de exploração e períodos de retorno do investimento, e também o método VAL (Valor Atual Líquido) que pressupõe uma análise do investimento ao longo do tempo. Com este trabalho, conclui-se que um projeto cuidado dos vãos envidraçados e uma seleção criteriosa dos elementos construtivos, aliados a uma análise inerente ao custo/benefício, contribui significativamente para a escolha adequada das soluções construtivas a adotar, de forma a privilegiar o conforto térmico, o desempenho energético dos edifícios e a conservação de energia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work analyses a study on natural ventilation and its relation to the urban legislation versus the building types in an urban fraction of coastal area of Praia do Meio in the city of Natal/RN, approaching the type or types of land use most appropriate to this limited urban fraction. The objective of this study is to analyse the effects of the present legislation as well as the types of buildings in this area on the natural ventilation. This urban fraction was selected because it is one of the sites from where the wind flows into the city of Natal. This research is based on the hypothesis stating that the reduction on the porosity of the urban soil (decrease in the set back/boundary clearance), and an increase in the form (height of the buildings) rise the level of the ventilation gradient, consequently causing a reduction on the wind speed at the lowest part of the buildings. Three-dimensional computational models were used to produce the modes of occupation allowed in the urban fraction within the area under study. A Computational Fluid Dynamics (CFD) software was also used to analyse the modes of land occupation. Following simulation, a statistical assessment was carried out for validation of the hypothesis. It was concluded that the reduction in the soil porosity as a consequence of the rates that defined the minimum boundary clearance between the building and the boundary of the plot (and consequently the set back), as well as the increase in the building form (height of the buildings) caused a reduction in the wind speed, thus creating heat islands

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Building design is an effective way to achieve HVAC energy consumption reduction. However, this potentiality is often neglected by architects due to the lack of references to support design decisions. This works intends to propose architectural design guidelines for energy efficiency and thermal performance of Campus/UFRN buildings. These guidelines are based on computer simulations results using the software DesignBuilder. The definition of simulation models has begun with envelope variables, partially done after a field study of thirteen buildings at UFRN/Campus. This field study indicated some basic envelope patterns that were applied in simulation models. Occupation variables were identified with temperature and energy consumption monitoring procedures and a verification of illumination and equipment power, both developed at the Campus/UFRN administration building. Three simulation models were proposed according to different design phases and decisions. The first model represents early design decisions, simulating the combination of different types of geometry with three levels of envelope thermal performance. The second model, still as a part of early design phase, analyses thermal changes between circulation halls lateral and central and office rooms, as well as the heat fluxes and monthly temperatures in each circulation hall. The third model analyses the influence of middle-design and detail design decisions on energy consumption and thermal performance. In this model, different solutions of roofs, shading devices, walls and external colors were simulated. The results of all simulation models suggest a high influence of thermal loads due to the incidence of solar radiation on windows and surfaces, which highlights the importance of window shading devices, office room orientation and absorptance of roof and walls surfaces

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aims to compare the thermal performance of tiles made from recycled material (waste packaging cardboard with aluminized film) with the tiles of fiber and bitumen, fiber cement and red ceramic with the aim of verifying the suitability of tile to be used in hot and humid climate of low latitude. The samples were selected according to the availability from Natal - RN market, as they are sold to the consumers. The methodology was based on studies that used experimental apparatus composed of thermal chambers heated by banks of incandescent bulbs, to analyze the thermal performance of materials. The tiles in the study were submitted to analysis of thermal performance, thermophysical properties and absorptance, using chambers of thermal performance, measuring the thermophysical properties and portable spectrometer, respectively. Comparative analysis of thermal performance between two samples of the recycled material with dimple sizes and different amounts of aluminum were made, in order to verify, if these characteristics had some interference on the thermal performance of them; the results showed no significant performance differences between the samples. The data obtained in chambers of thermal performance and confirmed by statistical analysis, showed, that the tile of recycled material have similar thermal performance to the tile of fiber cement. In addition to these tests was carried out the automatic monitoring of a building covered with tiles of recycled material, to verify its thermal performance in a real situation. The results showed that recycled shingles must be used with technical criteria similar to those used for fiber cement tiles, with regard to the heat gain into the building. Within these criteria should be taken into account local characteristics, especially in regions with hot and humid climate, and its use must be associated, according to the literature, to elements of thermal insulation and use of passive techniques such as vented attics, ceilings and right foot higher

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work studies the natural ventilation and its relationship with the urban standards, which establishes the form of occupation and use of the land in our cities. The method simulates the application of the urban standards of the City Master Plan over the last three years. The simulation takes place in the District of Petrópolis, in the city of Natal , Brazil and analyses the effects of the standards of natural ventilation. The formulated hypothesis states that the reductions in the urban spaces between buildings rises up the vertical profile of ventilation, reducing, therefore, the velocity of the wind at the lower levels of the buildings. To develop the study, occupation models were built, using computerized, three-dimensional models. These occupation models were analyzed using the CFD (Computational Fluid Dynamics) code. The conclusion is that the more we reduce the urban space between buildings, the more we reduce the wind speed in constructed areas, increasing, therefore, the possibility to generate heat islands

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ta-Cu bulk composites combine high mechanical resistance of the Ta with high electrical and thermal conductivity of the Cu. These are important characteristics to electrical contacts, microwave absorber and heat skinks. However, the low wettability of Ta under Cu liquid and insolubility mutual these elements come hard sintering this composite. High-energy milling (HEM) produces composite powders with high homogeneity and refines the grain size. This work focus to study Ta-20wt%Cu composite powders prepared by mechanical mixture and HEM with two different conditions of milling in a planetary ball mill and then their sintering using hydrogen plasma furnace and a resistive vacuum furnace. After milling, the powders were pressed in a steel dye at a pressure of 200 MPa. The cylindrical samples pressed were sintered by resistive vacuum furnace at 10-4torr with a sintering temperature at 1100ºC / 60 minutes and with heat rate at 10ºC/min and were sintered by plasma furnace with sintering temperatures at 550, 660 and 800ºC without isotherm under hydrogen atmosphere with heat rate at 80ºC/min. The characterizations of the powders produced were analyzed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and laser granulometry. After the sintering the samples were analyzed by SEM, XRD and density and mass loss tests. The results had shown that to high intense milling condition produced composite particles with shorter milling time and amorphization of both phases after 50 hours of milling. The composite particles can produce denser structure than mixed powders, if heated above the Cu melting point. After the Cu to arrive in the melting point, liquid copper leaves the composite particles and fills the pores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tungsten/copper composites are commonly used for electrical and thermal objectives like heat sinks and lectrical conductors, propitiating an excellent thermal and electrical conductivity. These properties are dependents of the composition, crystallite size and production process. The high energy milling of the powder of W-Cu produces an dispersion high and homogenization levels with crystallite size of W very small in the ductile Cu phase. This work discusses the effect of the HEM in preparation of the W-25Cu composite powders. Three techniques of powder preparation were utilized: milling the dry with powder of thick Cu, milling the dry with powder of fine Cu and milling the wet with powder of thick Cu. The form, size and composition of the particles of the powders milled were observed by scanning electron microscopy (SEM). The X-ray diffraction (XRD) was used to analyse the phases, lattice parameters, size and microstrain of the crystallite. The analyse of the crystalline structure of the W-25Cu powders milled made by Rietveld Method suggests the partial solid solubility of the constituent elements of the Cu in lattice of the W. This analyse shows too that the HEM produces the reduction high on the crystallite size and the increase in the lattice strain of both phases, this is more intense in the phase W

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal substrates were coated by thermal spraying plasma torch, they were positioned at a distance of 4 and 5 cm from the nozzle exit of the plasma jet. The starting materials were used for deposition of tantalum oxide powder and aluminium. These two materials were mixed and ground into high-energy mill, then immersed in the torch for the production of alumina coating infused with particles of tantalum with nano and micrometric size. The spraying equipment used is a plasma torch arc not transferred, which operating in the range of 250 A and 80 V, was able to produce enough heat to ignite aluminothermic between Ta2O5 and aluminum. Upon reaching the plasma jet, the mixing powders react with the heat of the blaze, which provides sufficient energy for melting aluminum particles. This energy is transferred through mechanisms of self-propagating to the oxide, beginning a reduction reaction, which then hits on the surface of the substrate and forms a coating on which a composite is formed by a junction metal - ceramic (Ta +Al2O3). The phases and quantification of each were obtained respectively by X-ray diffraction and the Rietveld method. Morphology by scanning electron microscopy and chemical analysis by energy dispersive spectroscopy EDS. It was also performed measurements of the substrate roughness, Vickers microhardness measurements in sprays and determination of the electron temperature of the plasma jet by optical emission spectroscopy EEO. The results confirmed the expectation generated around the end product of spraying the mixture Ta2O5 + Al, both in the formation of nano-sized particles and in their final form. The electron excitation temperature was consistent with the purpose of work, in addition, the thermodynamic temperature was efficient for the reduction process of Ta2O5. The electron excitation temperature showed values of 3000, 4500 and 8000 K for flows10, 20 and 30 l / min respectively, these values were taken at the nozzle exit of the plasma jet. The thermodynamic temperature around 1200 ° C, was effective in the reduction process of Ta2O5

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To produce porcelain tiles fluxing agents are used in order to obtain a liquid phase during firing. This liquid phase fills the pores decreasing porosity, water absorption and contributes to material densification. In the porcelain tiles industry, feldspar is the main flux material used, with quantities ranging between 35 and 50%. Studies focus on the discovery of materials with flux characteristics that can reduce the consumption of feldspar by porcelain tiles industry. In this context, the coffee husk ashes, a residue obtained when coffee husks are burned to produce heat for the dryers during the processing of the green fruit, have as main chemical constituents potassium, calcium and magnesium, giving them characteristics of fluxing material. Brazil is the largest coffee producer in the world and is responsible for over 30% of the world s production. In this work a physical treatment of coffee husk ash was carried out in order to eliminate the organic matter and, after this, two by-products were obtained: residual wastes R1 and R2. Both residues were added separately as single fluxes and also in association with feldspar in mixtures with raw materials collected in a porcelain industry located in Dias d Ávila-Ba. The addition of these residues aimed to contribute to the reduction of the consumption of feldspar in the production of porcelain tiles. Specimens were produced with dimensions of 60 mm x 20 mm x 6 mm in an uniaxial die with compacting pressure of 45 MPa. The samples were heated to a temperature of 1200 °C, for 8 minutes. Tests were performed to characterize the raw materials by XRF, XRD, particle size analysis, DTA and TGA and, additionally, the results of the physical properties of water absorption, apparent porosity, linear shrinkage, density, dilatometry, flexural strength and SEM of sintered body were analyzed. Additions of less than 8% of the residue R1 contributed to the decrease of porosity, but the mechanical strength of the samples was not satisfactory. Additions of 5% the R2 residue contributed significantly to decrease the water absorption and apparent porosity, and also to increase the mechanical strength. Samples with addition of feldspar associated with the R2 residue, in proportions of 6.7% of R2 and 6.7% of feldspar, led to results of water absorption of 0.12% and mechanical strength of 46 MPa, having parameters normalized to the manufacture of porcelain stoneware tiles