994 resultados para Calcium, Simulation, Epidermis, Automata
Resumo:
This study proposes a method of direct and simultaneous determination of the amount of Ca2+ and Mg2+ present in soil extracts using a Calcium Ion-Selective Electrode and by Complexometric Titration (ISE-CT). The results were compared to those obtained by conventional analytical techniques of Complexometric Titration (CT) and Flame Atomic Absorption Spectrometry (FAAS). There were no significant differences in the determination of Ca2+ and Mg2+ in comparison with CT and FAAS, at a 95 % confidence level. Additionally, results of this method were more precise and accurate than of the Interlaboratorial Control (IC).
Resumo:
A previous study sponsored by the Smart Work Zone Deployment Initiative, “Feasibility of Visualization and Simulation Applications to Improve Work Zone Safety and Mobility,” demonstrated the feasibility of combining readily available, inexpensive software programs, such as SketchUp and Google Earth, with standard two-dimensional civil engineering design programs, such as MicroStation, to create animations of construction work zones. The animations reflect changes in work zone configurations as the project progresses, representing an opportunity to visually present complex information to drivers, construction workers, agency personnel, and the general public. The purpose of this study is to continue the work from the previous study to determine the added value and resource demands created by including more complex data, specifically traffic volume, movement, and vehicle type. This report describes the changes that were made to the simulation, including incorporating additional data and converting the simulation from a desktop application to a web application.
Resumo:
Cardiac L-type Ca (CaV1.2) channels are composed of a pore forming CaV1.2-α1 subunit and auxiliary β- and α2δ-subunits. β-subunits are important not only for surface expression of the channel pore but also for modulation of channel gating properties. Different β-subunits differentially modulate channel activity (Hullin et al., PLOSone, 2007) and thus L-type Ca2+ channel gating is altered when β-subunit expression pattern is changed. In human heart failure increased activity of single ventricular L-type Ca2+-channels is associated with an increased expression of β2-subunits. Interestingly, induction of β2-subunit over-expression in hearts of transgenic mice resembled this heart failure phenotype of hyperactive single L-type Ca2+-channel channels (Beetz et al., Cardiovasc Res. 2009). We hypothesised that competition of less stimulating β-subunits (e.g. β1) with β-subunits causing strong channel stimulation (e.g. β2) might be a means to treat dysfunctional L-type Ca2+-channel activity. To test this hypothesis, we performed whole-cell and single-channel measurements employing recombinant CaV1.2 channels expressed in HEK293 cells together with both β- and β1a2b-subunits. Whole-cell analysis revealed no differences of maximum L-type Ca2+-current densities [pA/pF] with coexpression of either β1a-subunits (-52±3.8), β2b-subunits (-61.5±6.6) or the mixtures of β- and β1a2b-subunits with the plasmid transfection ratio of 2:1 (-60.2±1.6) and 1:1 (-56.7±2.6) respectively. However, steady state inactivation kinetics differed between particular β-subunit and the relative amount of β-subunit presence in the mixtures (β1a1a-subunit (-41.1±1.0), β2b-subunits (-35.1±1.1), mixture 2:1 (-40.3±1.5), and mixture 1:1 (-38.4±2.0); [mV]; p<0.05, students t-test). Using a novel single-channel analysis, switching of gating between β1-like and β2-like modes was monitored on a minute time-scale when both β-subunits were co-expressed in the same cells, but the larger amount of β1a-subunits is required for the effective switching of gating. Our results indicate a model of mutually exclusive binding and effective competition between several β-subunits suggesting that hyperactive channel gating mediated e.g. by β2-subunits can be normalized by β1-subunits. Therefore, competitive replacement between different L-type Ca2+-channel β-subunits might serve as a novel therapeutic strategy for e.g. heart failure.
Resumo:
Mathematical models have great potential to support land use planning, with the goal of improving water and land quality. Before using a model, however, the model must demonstrate that it can correctly simulate the hydrological and erosive processes of a given site. The SWAT model (Soil and Water Assessment Tool) was developed in the United States to evaluate the effects of conservation agriculture on hydrological processes and water quality at the watershed scale. This model was initially proposed for use without calibration, which would eliminate the need for measured hydro-sedimentologic data. In this study, the SWAT model was evaluated in a small rural watershed (1.19 km²) located on the basalt slopes of the state of Rio Grande do Sul in southern Brazil, where farmers have been using cover crops associated with minimum tillage to control soil erosion. Values simulated by the model were compared with measured hydro-sedimentological data. Results for surface and total runoff on a daily basis were considered unsatisfactory (Nash-Sutcliffe efficiency coefficient - NSE < 0.5). However simulation results on monthly and annual scales were significantly better. With regard to the erosion process, the simulated sediment yields for all years of the study were unsatisfactory in comparison with the observed values on a daily and monthly basis (NSE values < -6), and overestimated the annual sediment yield by more than 100 %.
Resumo:
We have investigated hysteresis and the return-point memory (RPM) property in deterministic cellular automata with avalanche dynamics. The RPM property reflects a partial ordering of metastable states, preserved by the dynamics. Recently, Sethna et al. [Phys. Rev. Lett. 70, 3347 (1993)] proved this behavior for a homogeneously driven system with static disorder. This Letter shows that the partial ordering and the RPM can be displayed as well by systems driven heterogeneously, as a result of its own evolution dynamics. In particular, we prove the RPM property for a deterministic 2D sandpile automaton driven at a central site.
Resumo:
Selostus: Kationi-anionitasapaino ummessaolevien lypsylehmien säilörehuruokinnassa kalsiumin saannin ollessa runsas
Resumo:
BACKGROUND: Bone graft substitute such as calcium sulfate are frequently used as carrier material for local antimicrobial therapy in orthopedic surgery. This study aimed to assess the systemic absorption and disposition of tobramycin in patients treated with a tobramycin-laden bone graft substitute (Osteoset® T). METHODS: Nine blood samples were taken from 12 patients over 10 days after Osteoset® T surgical implantation. Tobramycin concentration was measured by fluorescence polarization. Population pharmacokinetic analysis was performed using NONMEM to assess the average value and variability (CV) of pharmacokinetic parameters. Bioavailability (F) was assessed by equating clearance (CL) with creatinine clearance (Cockcroft CLCr). Based on the final model, simulations with various doses and renal function levels were performed. (ClinicalTrials.gov number, NCT01938417). RESULTS: The patients were 52 +/- 20 years old, their mean body weight was 73 +/- 17 kg and their mean CLCr was 119 +/- 55 mL/min. Either 10 g or 20 g Osteoset® T with 4% tobramycin sulfate was implanted in various sites. Concentration profiles remained low and consistent with absorption rate-limited first-order release, while showing important variability. With CL equated to CLCr, mean absorption rate constant (ka) was 0.06 h-1, F was 63% or 32% (CV 74%) for 10 and 20 g Osteoset® T respectively, and volume of distribution (V) was 16.6 L (CV 89%). Simulations predicted sustained high, potentially toxic concentrations with 10 g, 30 g and 50 g Osteoset® T for CLCr values below 10, 20 and 30 mL/min, respectively. CONCLUSIONS: Osteoset® T does not raise toxicity concerns in subjects without significant renal failure. The risk/benefit ratio might turn unfavorable in case of severe renal failure, even after standard dose implantation.
Resumo:
Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical agent in the human or animal organism. A general model based on four compartments was developed in a previous study in order to quantify the effect of human variability on a wide range of biological exposure indicators. The aim of this study was to adapt this existing general toxicokinetic model to three organic solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, and to take into account sex differences. We assessed in a previous human volunteer study the impact of sex on different biomarkers of exposure corresponding to the three organic solvents mentioned above. Results from that study suggested that not only physiological differences between men and women but also differences due to sex hormones levels could influence the toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic models developed in this study. Our results showed that it was possible to use an existing general toxicokinetic model for other compounds. In fact, most of the simulation results showed good agreement with the experimental data obtained for the studied solvents, with a percentage of model predictions that lies within the 95% confidence interval varying from 44.4 to 90%. Results pointed out that for same exposure conditions, men and women can show important differences in urinary levels of biological indicators of exposure. Moreover, when running the models by simulating industrial working conditions, these differences could even be more pronounced. In conclusion, a general and simple toxicokinetic model, adapted for three well known organic solvents, allowed us to show that metabolic parameters can have an important impact on the urinary levels of the corresponding biomarkers. These observations give evidence of an interindividual variablity, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields.
Resumo:
A screened Rutherford cross section is modified by means of a correction factor to obtain the proper transport cross section computed by partial¿wave analysis. The correction factor is tabulated for electron energies in the range 0¿100 keV and for elements in the range from Z=4 to 82. The modified screened Rutherford cross section is shown to be useful as an approximation for the simulation of plural and multiple scattering. Its performance and limitations are exemplified for electrons scattered in Al and Au.
Resumo:
A Monte Carlo procedure to simulate the penetration and energy loss of low¿energy electron beams through solids is presented. Elastic collisions are described by using the method of partial waves for the screened Coulomb field of the nucleus. The atomic charge density is approximated by an analytical expression with parameters determined from the Dirac¿Hartree¿Fock¿Slater self¿consistent density obtained under Wigner¿Seitz boundary conditions in order to account for solid¿state effects; exchange effects are also accounted for by an energy¿dependent local correction. Elastic differential cross sections are then easily computed by combining the WKB and Born approximations to evaluate the phase shifts. Inelastic collisions are treated on the basis of a generalized oscillator strength model which gives inelastic mean free paths and stopping powers in good agreement with experimental data. This scattering model is accurate in the energy range from a few hundred eV up to about 50 keV. The reliability of the simulation method is analyzed by comparing simulation results and experimental data from backscattering and transmission measurements.
Resumo:
A screened Rutherford cross section is modified by means of a correction factor to obtain the proper transport cross section computed by partial¿wave analysis. The correction factor is tabulated for electron energies in the range 0¿100 keV and for elements in the range from Z=4 to 82. The modified screened Rutherford cross section is shown to be useful as an approximation for the simulation of plural and multiple scattering. Its performance and limitations are exemplified for electrons scattered in Al and Au.
Resumo:
Calcium has a pivotal role in biological functions, and serum calcium levels have been associated with numerous disorders of bone and mineral metabolism, as well as with cardiovascular mortality. Here we report results from a genome-wide association study of serum calcium, integrating data from four independent cohorts including a total of 12,865 individuals of European and Indian Asian descent. Our meta-analysis shows that serum calcium is associated with SNPs in or near the calcium-sensing receptor (CASR) gene on 3q13. The top hit with a p-value of 6.3 x 10(-37) is rs1801725, a missense variant, explaining 1.26% of the variance in serum calcium. This SNP had the strongest association in individuals of European descent, while for individuals of Indian Asian descent the top hit was rs17251221 (p = 1.1 x 10(-21)), a SNP in strong linkage disequilibrium with rs1801725. The strongest locus in CASR was shown to replicate in an independent Icelandic cohort of 4,126 individuals (p = 1.02 x 10(-4)). This genome-wide meta-analysis shows that common CASR variants modulate serum calcium levels in the adult general population, which confirms previous results in some candidate gene studies of the CASR locus. This study highlights the key role of CASR in calcium regulation.