934 resultados para Cactus Graph
Resumo:
In this paper we consider the problems of computing a minimum co-cycle basis and a minimum weakly fundamental co-cycle basis of a directed graph G. A co-cycle in G corresponds to a vertex partition (S,V ∖ S) and a { − 1,0,1} edge incidence vector is associated with each co-cycle. The vector space over ℚ generated by these vectors is the co-cycle space of G. Alternately, the co-cycle space is the orthogonal complement of the cycle space of G. The minimum co-cycle basis problem asks for a set of co-cycles that span the co-cycle space of G and whose sum of weights is minimum. Weakly fundamental co-cycle bases are a special class of co-cycle bases, these form a natural superclass of strictly fundamental co-cycle bases and it is known that computing a minimum weight strictly fundamental co-cycle basis is NP-hard. We show that the co-cycle basis corresponding to the cuts of a Gomory-Hu tree of the underlying undirected graph of G is a minimum co-cycle basis of G and it is also weakly fundamental.
Resumo:
We consider the problem of computing an approximate minimum cycle basis of an undirected edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time 0(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time 0(n(3+2/k)), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega)) bound. We also present a 2-approximation algorithm with O(m(omega) root n log n) expected running time, a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.
Resumo:
Following the spirit of the enhanced Russell graph measure, this paper proposes an enhanced Russell-based directional distance measure (ERBDDM) model for dealing with desirable and undesirable outputs in data envelopment analysis (DEA) and allowing some inputs and outputs to be zero. The proposed method is analogous to the output oriented slacks-based measure (OSBM) and directional output distance function approach because it allows the expansion of desirable outputs and the contraction of undesirable outputs. The ERBDDM is superior to the OSBM model and traditional approach since it is not only able to identify all the inefficiency slacks just as the latter, but also avoids the misperception and misspecification of the former, which fails to identify null-jointness production of goods and bads. The paper also imposes a strong complementary slackness condition on the ERBDDM model to deal with the occurrence of multiple projections. Furthermore, we use the Penn Table data to help us explore our new approach in the context of environmental policy evaluations and guidance for performance improvements in 111 countries.
Resumo:
We consider a scenario in which a wireless sensor network is formed by randomly deploying n sensors to measure some spatial function over a field, with the objective of computing a function of the measurements and communicating it to an operator station. We restrict ourselves to the class of type-threshold functions (as defined in the work of Giridhar and Kumar, 2005), of which max, min, and indicator functions are important examples: our discussions are couched in terms of the max function. We view the problem as one of message-passing distributed computation over a geometric random graph. The network is assumed to be synchronous, and the sensors synchronously measure values and then collaborate to compute and deliver the function computed with these values to the operator station. Computation algorithms differ in (1) the communication topology assumed and (2) the messages that the nodes need to exchange in order to carry out the computation. The focus of our paper is to establish (in probability) scaling laws for the time and energy complexity of the distributed function computation over random wireless networks, under the assumption of centralized contention-free scheduling of packet transmissions. First, without any constraint on the computation algorithm, we establish scaling laws for the computation time and energy expenditure for one-time maximum computation. We show that for an optimal algorithm, the computation time and energy expenditure scale, respectively, as Theta(radicn/log n) and Theta(n) asymptotically as the number of sensors n rarr infin. Second, we analyze the performance of three specific computation algorithms that may be used in specific practical situations, namely, the tree algorithm, multihop transmission, and the Ripple algorithm (a type of gossip algorithm), and obtain scaling laws for the computation time and energy expenditure as n rarr infin. In particular, we show that the computation time for these algorithms scales as Theta(radicn/lo- g n), Theta(n), and Theta(radicn log n), respectively, whereas the energy expended scales as , Theta(n), Theta(radicn/log n), and Theta(radicn log n), respectively. Finally, simulation results are provided to show that our analysis indeed captures the correct scaling. The simulations also yield estimates of the constant multipliers in the scaling laws. Our analyses throughout assume a centralized optimal scheduler, and hence, our results can be viewed as providing bounds for the performance with practical distributed schedulers.
Resumo:
In this paper the approach for automatic road extraction for an urban region using structural, spectral and geometric characteristics of roads has been presented. Roads have been extracted based on two levels: Pre-processing and road extraction methods. Initially, the image is pre-processed to improve the tolerance by reducing the clutter (that mostly represents the buildings, parking lots, vegetation regions and other open spaces). The road segments are then extracted using Texture Progressive Analysis (TPA) and Normalized cut algorithm. The TPA technique uses binary segmentation based on three levels of texture statistical evaluation to extract road segments where as, Normalizedcut method for road extraction is a graph based method that generates optimal partition of road segments. The performance evaluation (quality measures) for road extraction using TPA and normalized cut method is compared. Thus the experimental result show that normalized cut method is efficient in extracting road segments in urban region from high resolution satellite image.
Resumo:
This study views each protein structure as a network of noncovalent connections between amino acid side chains. Each amino acid in a protein structure is a node, and the strength of the noncovalent interactions between two amino acids is evaluated for edge determination. The protein structure graphs (PSGs) for 232 proteins have been constructed as a function of the cutoff of the amino acid interaction strength at a few carefully chosen values. Analysis of such PSGs constructed on the basis of edge weights has shown the following: 1), The PSGs exhibit a complex topological network behavior, which is dependent on the interaction cutoff chosen for PSG construction. 2), A transition is observed at a critical interaction cutoff, in all the proteins, as monitored by the size of the largest cluster (giant component) in the graph. Amazingly, this transition occurs within a narrow range of interaction cutoff for all the proteins, irrespective of the size or the fold topology. And 3), the amino acid preferences to be highly connected (hub frequency) have been evaluated as a function of the interaction cutoff. We observe that the aromatic residues along with arginine, histidine, and methionine act as strong hubs at high interaction cutoffs, whereas the hydrophobic leucine and isoleucine residues get added to these hubs at low interaction cutoffs, forming weak hubs. The hubs identified are found to play a role in bringing together different secondary structural elements in the tertiary structure of the proteins. They are also found to contribute to the additional stability of the thermophilic proteins when compared to their mesophilic counterparts and hence could be crucial for the folding and stability of the unique three-dimensional structure of proteins. Based on these results, we also predict a few residues in the thermophilic and mesophilic proteins that can be mutated to alter their thermal stability.
Resumo:
The boxicity of a graph G, denoted box(G), is the least integer d such that G is the intersection graph of a family of d-dimensional (axis-parallel) boxes. The cubicity, denoted cub(G), is the least dsuch that G is the intersection graph of a family of d-dimensional unit cubes. An independent set of three vertices is an asteroidal triple if any two are joined by a path avoiding the neighbourhood of the third. A graph is asteroidal triple free (AT-free) if it has no asteroidal triple. The claw number psi(G) is the number of edges in the largest star that is an induced subgraph of G. For an AT-free graph G with chromatic number chi(G) and claw number psi(G), we show that box(G) <= chi(C) and that this bound is sharp. We also show that cub(G) <= box(G)([log(2) psi(G)] + 2) <= chi(G)([log(2) psi(G)] + 2). If G is an AT-free graph having girth at least 5, then box(G) <= 2, and therefore cub(G) <= 2 [log(2) psi(G)] + 4. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background: Thermophilic proteins sustain themselves and function at higher temperatures. Despite their structural and functional similarities with their mesophilic homologues, they show enhanced stability. Various comparative studies at genomic, protein sequence and structure levels, and experimental works highlight the different factors and dominant interacting forces contributing to this increased stability. Methods: In this comparative structure based study, we have used interaction energies between amino acids, to generate structure networks called as Protein Energy Networks (PENs). These PENs are used to compute network, sub-graph, and node specific parameters. These parameters are then compared between the thermophile-mesophile homologues. Results: The results show an increased number of clusters and low energy cliques in thermophiles as the main contributing factors for their enhanced stability. Further more, we see an increase in the number of hubs in thermophiles. We also observe no community of electrostatic cliques forming in PENs. Conclusion: In this study we were able to take an energy based network approach, to identify the factors responsible for enhanced stability of thermophiles, by comparative analysis. We were able to point out that the sub-graph parameters are the prominent contributing factors. The thermophiles have a better-packed hydrophobic core. We have also discussed how thermophiles, although increasing stability through higher connectivity retains conformational flexibility, from a cliques and communities perspective.
Resumo:
Background: Thermophilic proteins sustain themselves and function at higher temperatures. Despite their structural and functional similarities with their mesophilic homologues, they show enhanced stability. Various comparative studies at genomic, protein sequence and structure levels, and experimental works highlight the different factors and dominant interacting forces contributing to this increased stability. Methods: In this comparative structure based study, we have used interaction energies between amino acids, to generate structure networks called as Protein Energy Networks (PENs). These PENs are used to compute network, sub-graph, and node specific parameters. These parameters are then compared between the thermophile-mesophile homologues. Results: The results show an increased number of clusters and low energy cliques in thermophiles as the main contributing factors for their enhanced stability. Further more, we see an increase in the number of hubs in thermophiles. We also observe no community of electrostatic cliques forming in PENs. Conclusion: In this study we were able to take an energy based network approach, to identify the factors responsible for enhanced stability of thermophiles, by comparative analysis. We were able to point out that the sub-graph parameters are the prominent contributing factors. The thermophiles have a better-packed hydrophobic core. We have also discussed how thermophiles, although increasing stability through higher connectivity retains conformational flexibility, from a cliques and communities perspective.
Resumo:
Accurate mass flow measurement is very important in various monitoring and control applications. This paper proposes a novel method of fluid flow measurement by compensating the pressure drop across the ends of measuring unit using a compensating pump. The pressure drop due to the flow is balanced by a feedback control loop. This is a null-deflection type of measurement. As the insertion of such a measuring unit does not affect the functioning of the systems, this is also a non-disruptive flow measurement method. The implementation and design of such a unit are discussed. The system is modeled and simulated using the bond graph technique and it is experimentally validated. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We view association of concepts as a complex network and present a heuristic for clustering concepts by taking into account the underlying network structure of their associations. Clusters generated from our approach are qualitatively better than clusters generated from the conventional spectral clustering mechanism used for graph partitioning.
Resumo:
We consider a variant of the popular matching problem here. The input instance is a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$, where vertices in $\mathcal{A}$ are called applicants and vertices in $\mathcal{P}$ are called posts. Each applicant ranks a subset of posts in an order of preference, possibly involving ties. A matching $M$ is popular if there is no other matching $M'$ such that the number of applicants who prefer their partners in $M'$ to $M$ exceeds the number of applicants who prefer their partners in $M$ to $M'$. However, the “more popular than” relation is not transitive; hence this relation is not a partial order, and thus there need not be a maximal element here. Indeed, there are simple instances that do not admit popular matchings. The questions of whether an input instance $G$ admits a popular matching and how to compute one if it exists were studied earlier by Abraham et al. Here we study reachability questions among matchings in $G$, assuming that $G=(\mathcal{A}\cup\mathcal{P},E)$ admits a popular matching. A matching $M_k$ is reachable from $M_0$ if there is a sequence of matchings $\langle M_0,M_1,\dots,M_k\rangle$ such that each matching is more popular than its predecessor. Such a sequence is called a length-$k$ voting path from $M_0$ to $M_k$. We show an interesting property of reachability among matchings in $G$: there is always a voting path of length at most 2 from any matching to some popular matching. Given a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$ with $n$ vertices and $m$ edges and any matching $M_0$ in $G$, we give an $O(m\sqrt{n})$ algorithm to compute a shortest-length voting path from $M_0$ to a popular matching; when preference lists are strictly ordered, we have an $O(m+n)$ algorithm. This problem has applications in dynamic matching markets, where applicants and posts can enter and leave the market, and applicants can also change their preferences arbitrarily. After any change, the current matching may no longer be popular, in which case we are required to update it. However, our model demands that we switch from one matching to another only if there is consensus among the applicants to agree to the switch. Hence we need to update via a voting path that ends in a popular matching. Thus our algorithm has applications here.
Resumo:
We introduce a new class of clique separators, called base sets, for chordal graphs. Base sets of a chordal graph closely reflect its structure. We show that the notion of base sets leads to structural characterizations of planar k-trees and planar chordal graphs. Using these characterizations, we develop linear time algorithms for recognizing planar k-trees and planar chordal graphs. These algorithms are extensions of the Lexicographic_Breadth_First_Search algorithm for recognizing chordal graphs and are much simpler than the general planarity checking algorithm. Further, we use the notion of base sets to prove the equivalence of hamiltonian 2-trees and maximal outerplanar graphs.
Resumo:
Incremental semantic analysis in a programming environment based on Attribute Grammars is performed by an Incremental Attribute Evaluator (IAE). Current IAEs are either table-driven or make extensive use of graph structures to schedule reevaluation of attributes. A method of compiling an Ordered Attribute Grammar into mutually recursive procedures is proposed. These procedures form an optimal time Incremental Attribute Evaluator for the attribute grammar, which does not require any graphs or tables.
Resumo:
A number of AgI based fast ion conducting glasses, with a general formula AgI---Ag2O---MxOy (MxOy=MoO3, SeO3, WO3, V2O5, P2O5, GeO2, B2O3, As2O3, CrO3) have been studied. A chemical approach is made to investigate the origin of fast ion conduction in these glasses. An index known as Image tructural Image npinning Image umber, SUN (S), has been defined for the purpose, based on the unscreened nuclear charge of silver ions and the equilibrium lectronegativities of the halide-oxyanion matrix in these glasses. The variation of the glass transition temperature, Tg, conductivity, σ, and the energy of activation, Ea, with the concentration of AgI are discussed in the light of the structural unpinning number. Conductivities increase uniformly in any given glass series as a smooth function of S and level off at very high values. The entire range of conductivity appears to vary as ln Image , where ln σ0 corresponds roughly to the conductivity of the hypothetical AgI glass and “a” is a constant which could be obtained as the slope in the graph of ln Ea versus S. It is suggested that the increase in the concentration of AgI beyond 75–80 mole% in the glass is not advantageous from the conductivity point of view.