999 resultados para CONSERVING TREATMENT
Resumo:
The present work is an attempt to study crack initiation in nuclear grade, 9Cr-1Mo ferritic steel using AE as an online NDE tool. Laboratory experiments were conducted on 5 heat treated Compact Tension (CT) specimens made out of nuclear grade 9Cr-1Mo ferritic steel by subjecting them to cyclic tensile load. The CT Specimens were of 12.5 mm thickness. The Acoustic emission test system was setup to acquire the data continuously during the test by mounting AE sensor on one of the surfaces of the specimen. This was done to characterize AE data pertaining to crack initiation and then discriminate the samples in terms of their heat treatment processes based on AE data. The AE signatures at crack initiation could conclusively bring to fore the heat treatment distinction on a sample to sample basis in a qualitative sense.Thus, the results obtained through these investigations establish a step forward in utilizing AE technique as an on-line measurement tool for accurate detection and understanding of crack initiation and its profile in 9Cr-1Mo nuclear grade steel subjected to different processes of heat treatment.
Resumo:
Angiotensin converting enzyme (ACE) catalyses the conversion of angiotensin I (Ang I) to angiotensin II (Ang II). The ACE activity directly related to hypertension as Ang II is the blood pressure regulating hormone. Therefore, ACE inhibitors are a major class of antihypertensive drugs. Captopril, chemical name, was the first orally active ACE inhibitory antihypertensive drug, discovered in 1977. Since then, a number of such drugs have been synthesized. Enzyme-inhibitor bound crystal structural studies reveal a great deal of understanding about the interactions of the inhibitors at the active site of ACE. This can be helpful in the rational design of ACE inhibitors. With the advancement of the combination therapy, it is known that ACE inhibitors having antioxidant activity can be beneficial for the treatment of hypertension. This study describes the development of ACE inhibitors in the treatment of hypertension. Importance of ACE inhibitors having antioxidant activity is also described.
Resumo:
In this present paper, the effects of non-isothermal rolling temperature and reduction in thickness followed by annealing on microstructure and mechanical properties of ZM21 magnesium alloy were investigated. The alloy rolled at four different temperatures 250 degrees C, 300 degrees C, 350 degrees C and 400 degrees C with reductions of 25%, 50% and 75%. Non-isothermal rolling resulted in grain refinement, introduction of shear bands and twins in the matrix alloy. Partial to full recrystallization was observed when the rolling temperature was above recrystallization temperature. Rolling and subsequent annealing resulted in strain-free equiaxed grains and complete disappearance of shear bands and twins. Maximum ultimate strength (345 MPa) with good ductility (14%) observed in the sample rolled at 250 degrees C with 75% reduction in thickness followed by short annealing. Recrystallization during warm/hot rolling was sluggish, but post-roll treatment gives distinct views about dynamic and static recrystallization. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Manmade waterbodies have traditionally been used for domestic and irrigation purposes. Unplanned urbanization and ad-hoc approaches have led to these waterbodies receiving untreated sewage. This enriches and eutrophies the waterbody. A physicochemical and biological analysis of sewage-fed Varthur Lake in Bangalore was carried out and its treatment capabilities in terms of BOD removal, nutrient assimilation and self-remediation were assessed. Anaerobic conditions (0 mg/L) prevail at the inlet which improves towards the outlets due to algal aeration. This removed > 50% BOD in the monsoon season but was inhibited by floating macrophytes in all other seasons. Alkalinity, TDS, conductivity and hardness values were higher when compared to earlier studies. This study shows the lake behaves as an anaerobic~aerobic lagoon with a residence time of 4.8 d treating the wastewater to a considerable extent. Further research is required to optimise the system performance.
Resumo:
A computational framework for modeling the respiratory motion of lung tumors provides a 4D parametric representation that tracks, analyzes, and models movement to provide more accurate guidance in the planning and delivery of lung tumor radiotherapy.
Resumo:
pplication of pulsed plasma for gas cleaning is gaining prominence in recent years mainly from the energy consideration point of view. Normally, gas treatment is carried out, at or above room temperature, by a conventional dry type corona reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report some interesting results of the treatment of such stable gases with pulsed plasma at very low ambient temperature. Also reported in the paper is an improvement in DeNO/DeNOx efficiency using unconventional wet-type reactors, designed and fabricated by the authors, operating at different ambient temperatures. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of a 8 kW diesel engine. Further, an attempt was made to test the feasibility of a helical wire as a corona electrode in place of the conventional straight wire electrode. A comparative analysis of the various tests is presented together with a note on the energy consideration
Resumo:
This paper reports improved performance of discharge plasma in raw engine exhaust treatment. For the purpose of investigation, both filtered and raw diesel engine exhaust were separately treated by the discharge plasma. In raw exhaust environment, the discharge plasma exhibits a superior performance with regard to NOx removal, energy consumption and formation of by-products. In this study, experiments were conducted at conditions of different temperatures and loads.
Resumo:
This paper reports improved performance of discharge plasma in filtered engine exhaust treatment. Our paper deals about the removal of NOX emissions from the diesel exhaust by electric discharge plasma. For the treatment of diesel exhaust a new type of reactor referred to as crossflow dielectric barrier discharge reactor has been used, where the gas flow is perpendicular to the corona electrode. Experiments were conducted at different flow rates ranging from 2 l/min to 10 l/min. The discharge plasma assisted barrier discharge reactor has shown promising results in NOX removal at high flow rates.
Resumo:
Application of pulsed plasma for gas cleaning is gaining prominence in recent years mainly from the energy consideration point of view. Normally, gas treatment is carried out, at or above room temperature, by a conventional dry type corona reactor. However, this treatment is still inadequate in the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report some interesting results of the treatment of such stable gases with pulsed plasma at very low ambient temperature. Also reported in the paper is an improvement in DeNO/DeNOx efficiency using unconventional wet-type reactors, designed and fabricated by the authors, operating at different ambient temperatures. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of a 8 kW diesel engine. Further, an attempt was made to test the feasibility of a helical wire as a corona electrode in place of the conventional straight wire electrode. A comparative analysis of the various tests is presented together with a note on the energy consideration
Resumo:
The discharge plasma-chemical hybrid process for NO/sub x/ removal from the due gas emissions is an extremely effective and economical approach in comparison with the conventional selective catalytic reduction system. In this paper we bring out a relative comparison of several discharge plasma reactors from the point of NO removal efficiency. The reactors were either energized by AC or by repetitive pulses. Ferroelectric pellets were used to study the effect of pellet assisted discharges on gas cleaning. Diesel engine exhaust, at different loads, is used to approximately simulate the due gas composition. Investigations were carried out at room temperature with respect to the variation of reaction products against the discharge power. Main emphasis is laid on the oxidation of NO to NO/sub 2/, without reducing NOx concentration (i.e., minimum reaction byproducts), with least power consumption. The produced NO/sub 2/ will be totally converted to N/sub 2/ and Na/sub 2/SO/sub 4/ using Na/sub 2/SO/sub 3/. The AC packed bed reactor and pelletless pulsed corona reactor showed better performance, with minimum reaction products for a given power, when the NO concentration was low (/spl sim/100 ppm). At high engine loads (NO>300 ppm) there was not much decrease in NO/sub x/ reduction and more or less all the reactors performed equally. The paper discusses these observations in detail.