770 resultados para CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA::SENSORIAMENTO REMOTO


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cultivation of microalgae biomass in order to produce biodiesel arises as an extremely promising aspect, in that the microalgae culture includes short cycle of reproduction, smaller areas for planting and residual biomass rich in protein content. The present dissertation evaluates the performance and features, through spectrometry in the region of infrared with transformed Fourier (FTIR) and spectrometry in the region of UVvisible (UV-Vis), of the extracted lipid material (LM) using different techniques of cell wall disruption (mechanical agitation at low and at high spin and agitation associated with cavitation). The technique of gas chromatography (GC) brought to light the success of alkaline transesterification in the conversion of oil into methyl monoesters (MME), which was also analyzed by spectroscopic techniques (FTIR, proton magnetic resonance (1H NMR) and carbon (13C NMR). Through thermogravimetric analysis (TGA) were analyzed the lipid material (LM), biodiesel and the microalgae biomass. The method which provided the best results concerning the efficiency in extraction of the LP of Monoraphidium sp. (12,51%) was by mechanical agitation at high spin (14 000 rpm), for 2 hours being the ideal time, as shown by the t test. The spectroscopic techniques (1H NMR, 13C NMR and FTIR) confirmed that the structure of methyl monoesters and the chromatographic data (CG) revealed a high content of saturated fatty acid esters (about 70%) being the major constituent eicosanoic acid (33,7%), which justifies the high thermal stability of microalgae biodiesel. The TGA also ratified the conversion rate (96%) of LM into MME, pointing out the quantitative results compatible with the values obtained through GC (about 98%) and confirmed the efficiency of the extraction methods used, showing that may be a good technique to confirm the extraction of these materials. The content of LM microalgae obtained (12,51%) indicates good potential for using such material as a raw material for biodiesel production, when compared to oil content which can be obtained from traditional oil for this use, since the productivity of microalgae per hectare is much larger and requires an extremely reduced period to renew its cultivation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to study the effects of adding antioxidants, such as, α- tocopherol and BHT on the thermal and oxidative stability of biodiesel from cottonseed (B100). The Biodiesel was obtained through the methylical and ethylical routes. The main physical and chemical properties of cotton seed oil and the B100 were determined and characterized by FTIR and GC. The study of the efficiency of antioxidants, mentioned above, in concentrations of 200, 500, 1000, 1500, 2000ppm, to thermal and oxidative stability, was achieved by Thermogravimetry (TG), Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), Differential Scanning Calorimetry - Hi-Pressure (P-DSC) and Rancimat. The Biodiesel obtained are within the specifications laid down by Resolution of ANP No7/2008. The results of TG curves show that the addition of both antioxidants, even in the lowest concentration, increases the thermal stability of Biodieseis. Through the DTA and DSC it was possible to study the physical and chemical transitions occurred in the process of volatilization and decomposition of the material under study. The initial time (OT) and temperature (Tp) of oxidation were determined through the P-DSC curve and they showed that the α-tocopherol has a pro-oxidant behavior for some high concentrations. The BHT showed better results than the α-tocopherol, with regard to the resistance to oxidation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of MFI-type zeolite membranes was carried by the process in situ or hydrothermal crystallization. We studied the homogenization time of the room temperature and gel filtration just before the crystallization step performed out in an oven, thus obtaining a more uniform zeolite film. The powder synthesized zeolite (structure type MFI, Silicalite) was characterized by several complementary techniques such as Xray diffraction (XRD), scanning electron microscopy (SEM), thermal analysis, temperature programmed desorption (TPD), Fourier Transform infrared spectroscopy (FTIR) and textural analysis by nitrogen adsorption (specific surface area). For the purpose of evaluating the quality of the layer supported on the ceramic support, N2 permeation tests were carried starting from room temperature to 600 °C, where values were observed values more appropriate permeation from 200 °C. With the data obtained, it was made into a graph of temperature versus permeation function, the curve of surface diffusion was found. For scanning electron microscopy, we observed the formation of homogeneous crystals and the zeolite film showed no fissures or cracks, indicating that the process of synthesis and subsequent treatments not damaged the zeolite layer on the support. Carried permeation studies were found values ranging from 3.64x10-6 to 3.78x10-6, 4.71x10-6 to 5.02x10-6, to pressures 20 and 25 psi, respectively. And the mixture xylenes/N2 values were between 5.39x10-6 to 5.67x10-6 and 8.13x10-6 to 8.36x10-6, also for pressures of 20 and 25 psi. The values found for the separation factor were 15.22 at 400 °C in the first experiment and 1.64 for the second experiment at a temperature of 150 °C. It is concluded that the Silicalite membrane was successfully synthesized and that it is effective in the separation of binary mixtures of xylenes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although there are many studies on urban dust contamination by heavy metals in developed countries, little attention has been paid to this type of study in developing countries, including Brazil. Therefore, a series of investigations were performed to provide signatures of heavy metals in urban dust and assess the potential sources in the city of Natal - RN-Brazil. The fraction of these sediments was studied to pass through a sieve of 63 micrometers. For the study analyzed two groups of samples, one collected in September 2009 at the end of the rainy season (9 samples) and one collected in January 2010 in the dry season (21 samples). So in all, thirty sediment samples were collected from the street. Then, in Fluorescence Spectrometry X-rays were determined major elements SiO2, Na2O, K2O, Al2O3, MgO, P2O5, Fe2O3, MnO, TiO2 and CaO, and trace Rb, Cr, Ni, Cu, Zn, Sr and Pb by an ICPOES was determined Zn, V, Na, K, Ni, Mn, Mg, P, Fe, Cr, Cu, Pb, Ba, Ca and Al from leaching HCl 0.5 mol L-1 . The results of the concentrations of elements show that the greater presence of these occurs in the dry season, except for Si which is higher in the rainy season. Analyses by geoaccumulation Index (IGEO) Enrichment Factor (EF), Contamination Factor (CF), analysis correlation and Hierarchical Cluster, confirm that Zn, Cu and Pb is anthropogenic character. Zinc may be derived from various sources related to motor vehicles or the road signs and street grids. The elements Na, K, Mg and Ca may be related to droplets suspended in air containing cations and anions present in seawater (salty), common in Christmas throughout the year, brought by winds SE-NW. The elements Na, Mg, Ca and K are the most abundant in seawater and were analyzed in this study. This indicates that the source of these additional elements detected by analyzing the contamination factor may be the very sea. Moreover, Ni, Fe, Cr and Ba can be either as a source of anthropogenic geogênica. The source of Ca is different, because it comes in lime and paint (painting guides of buildings and streets) in construction materials, but may also be present in sediments in the fragments of shells or carbonate bioclasts common in the coastal area

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drying of fruit pulps in spouted beds of inert particles has been indicated as a viable technique to produce fruit powders. Most of the processes employed to produce dried fruit pulps and juices, such as Foam Mat, encapsulation by co-crystallization and spray drying utilize adjuvant and additives (such as thickeners, coating materials, emulsifiers, acidulants, flavors and dyes), which is not always desirable. The fruit pulp composition exerts an important effect on the fruit powder production using a spouted bed. In the study by Medeiros (2001) it was concluded that lipids, starch and pectin contents play an important role on the process performance, enhancing the powder production; however, the drying of fruit pulps containing high content of reducing sugars (glucose and fructose) is practically unviable. This work has the objective of expanding the studies on drying of fruit pulps in spouted bed with aid of adjuvant (lipids, starch and pectin) aiming to enhance the dryer performance without jeopardizing the sensorial quality of the product. The optimum composition obtained by Medeiros (2001) was the basis for preparing the mixtures of pulps. The mixture formulations included pulps of mango (Mangifera indica), umbu (Spondias tuberosa) and red mombin (Spondia purpurea) with addition of cornstarch, pectin and lipids. Different products were used as lipids source: olive and Brazil nut oils, coconut milk, heavy milk, powder of palm fat and palm olein. First of all, experiments were conducted to define the best formulation of the fruit pulps mixture. This definition was based on the drying performance obtained for each mixture and on the sensorial characteristics of the dry powder. The mixture formulations were submitted to drying at fixed operating conditions of drying and atomizing air flow rate, load of inert particles, temperature and flow rate of the mixture. The best results were obtained with the compositions having powder of palm fat and palm olein in terms of the drying performance and sensorial analysis. Physical and physicochemical characteristics were determined for the dry powders obtained from the mixtures formulations. Solubility and reconstitution time as well as the properties of the product after reconstitution were also evaluated. According to these analyses, the powder from the mixtures formulations presented similar characteristics and compatible quality to those produced in other types of dryers. Considering that the palm olein is produced in Brazil and that it has been used in the food industry substituting the palm fat powder, further studies on drying performance were conducted with the composition that included the palm olein. A complete factorial design of experiments 23, with three repetitions at the central point was conducted to evaluate the effects of the air temperature, feeding flow rate and intermittence time on the responses related to the process performance (powder collection efficiency, material retained in the bed and angle of repose of the inert particles after the process) and to the product quality (mean moisture content, loss of vitamin C and solubility). Powder production was uniform for the majority of the experiments and the higher efficiency with lower retention in the bed (59.2% and 1.8g, respectively) were obtained for the air temperature of 80°C, mixture feed rate of 5ml/min in intervals of 10 min. The statistical analysis of the results showed that the process variables had individual or combined significant influences on the powder collection efficiency, material retention in the bed, powder moisture content and loss of vitamin C. At the experimental ranges of this work, the angle of repose and solubility were not influenced by the operating variables. From the results of the experimental design, statistical models were obtained for the powder moisture content and loss of vitamin C

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the energy consumed worldwide comes from oil, coal and natural gas. These sources are limited and estimated to be exhausted in the future, therefore, the search for alternative sources of energy is paramount. Currently, there is considerable interest in making trade sustainable biodiesel, a fuel alternative to fossil fuels, due to its renewable nature and environmental benefits of its use in large scale. This trend has led the Brazilian government to establish a program (Probiodiesel) with the aim of introducing biodiesel into the national energy matrix, by addition of 5% biodiesel to conventional diesel in 2010 to foster not only the increase of renewable energy, but reduce imports of crude oil. This work evaluates different methods of extraction of oil Carthamus tinctorius L., their characterization by IR, 1H and 13C NMR, HPLC and TG and their use in the production of methyl ester (molar ratio of oil / alcohol 1:6, and NaOH catalyst). The physico-chemical parameters (acid value, density, viscosity, saponification index and surface tension) of oil and biodiesel were also described. The produced biodiesel had a yield of 93.65%, was characterized in relation to their physicochemical properties showing satisfactory results (density=875 kg/m3, viscosity = 6.22 mm2/s, AI = 0.01 mg (NaOH) /g) compared with the values established by the the National Agency Oil, Natural Gas and Biofuels

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrosion is a natural process that causes progressive deterioration of materials, so, reducing the corrosive effects is a major objective of development of scientific studies. In this work, the efficiency of corrosion inhibition on a AISI 1018 carbon steel of the nanoemulsion system containing the oil of the seeds of Azadirachta indica A. Juss (SNEOAI) was evaluated by the techniques of linear polarization resistance (LPR) and weight loss (CPM), a instrumented cell. For that, hydroalcoholic extract of leaves of A. indica (EAI) was solubilized in a nanoemulsion system (SNEOAI) of which O/W system (rich in aqueous phase). This nanoemulsion system (tested in different concentrations) was obtained with oil from the seeds of this plant species (OAI) (oil phase), dodecylammonium chloride (DDAC) (surfactant), butanol (cosurfactant) and water, using 30 % of C/T (cosurfactant/surfactant), 0.5 % of oil phase and 69.5 % of aqueous phase, and characterized by surface tension, rheology and droplet sizes. This systems SNEOAI and SNEOAI-EAI (nanoemulsion containing hydroalcoholic extract - EAI) showed inhibition efficiencies in corrosive environment in saline (1 %), for the method of LPR with significant value of 70.58 % (300 ppm) to SNEOAI, 74.17 % (100 ppm) and 72.51 % (150 ppm) to SNEOAI-EAI. The best efficiencies inhibitions were observed for the method of CPM with 85.41 % for the SNEOAI (300 ppm) and 83.19 % SNEOAI-EAI (500 ppm). The results show that this formulation could be used commercially for use as a corrosion inhibitor, this research contributed to the biotechnological applicability of Azadirachta indica, considering the large use of this plant species rich in limonoids (tetranortriterpenoids), especially azadirachtin

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innovative technologies using surfactant materials have applicability in several industrial fields, including petroleum and gas areas. This study seeks to investigate the use of a surfactant derived from coconut oil (SCO saponified coconut oil) in the recovery process of organic compounds that are present in oily effluents from petroleum industry. For this end, experiments were accomplished in a column of small dimension objectifying to verify the influence of the surfactant SCO in the efficiency of oil removal. This way, they were prepared emulsions with amount it fastens of oil (50, 100, 200 and 400 ppm), being determined the great concentrations of surfactant for each one of them. Some rehearsals were still accomplished with produced water of the industry of the petroleum to compare the result with the one of the emulsions. According to the experiments, it was verified that an increase of the surfactant concentration does not implicate in a greater oil removal. The separation process use gaseous bubbles formed when a gas stream pass a liquid column, when low surfactant concentrations are used, it occurs the coalescence of the dispersed oil droplets and their transport to the top of the column, forming a new continuous phase. Such surfactants lead to a gas-liquid interface saturation, depending on the used surfactant concentration, affecting the flotation process and influencing in the removal capacity of the oily dispersed phase. A porous plate filter, with pore size varying from 40 to 250 mm, was placed at the base of the column to allow a hydrodynamic stable operation. During the experimental procedures, the operating volume of phase liquid was held constant and the rate of air flow varied in each experiment. The resulting experimental of the study hydrodynamic demonstrated what the capturing of the oil was influenced by diameter of the bubbles and air flow. With the increase flow of 300 about to 900 cm3.min-1, occurred an increase in the removal of oil phase of 44% about to 66% and the removal kinetic of oil was defined as a reaction of 1° order.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The underground natural gas found associated or not with oil is characterized by a mixture of hydrocarbons and residual components such as carbon dioxide (CO2), nitrogen gas (N2) and hydrogen sulfide (H2S), called contaminants. The H2S especially promotes itself as a contaminant of natural gas to be associated with corrosion of pipelines, to human toxicity and final applications of Natural Gas (NG). The sulfur present in the GN must be fully or partially removed in order to meet the market specifications, security, transport or further processing. There are distinct and varied methods of desulfurization of natural gas processing units used in Natural Gas (UPGN). In order to solve these problems have for example the caustic washing, absorption, the use of membranes and adsorption processes is costly and great expenditure of energy. Arises on such findings, the need for research to active processes of economic feasibility and efficiency. This work promoted the study of the adsorption of sulfide gas in polymer matrices hydrogen pure and modified. The substrates of Poly(vinyl chloride) (PVC), poly(methyl methacrylate) (PMMA) and sodium alginate (NaALG) were coated with vanadyl phosphate compounds (VOPO4.2H2O), vanadium pentoxide (V2O5), rhodamine B (C28H31N2O3Cl) and ions Co2+ and Cu2+, aiming to the adsorption of hydrogen sulfide gas (H2S). The adsorption tests were through a continuous flow of H2S in a column system (fixed bed reactor) adsorption on a laboratory scale. The techniques used to characterize the adsorbents were Infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), X-ray fluorescence (XRF), the X-ray diffraction (XRD) electron microscopy (SEM). Such work indicates, the results obtained, the adsorbents modified PMMA, PVC and NaALG have a significant adsorptive capacity. The matrix that stood out and had the best adsorption capacity, was to ALG modified Co2+ with a score of 12.79 mg H2S / g matrix

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work examined the possibility of using mussel Mytella falcata as bioindicator sample to detect metal ions in several estuaries potiguares, since species substances that accumulate in their tissues due to its characteristics filter feeders have been used for environmental monitoring. The chemometrics by principal components analysis was used to reduce the size of the original data in order to establish a pattern of distribution of metal ion. Samples were collected at three different points in the estuaries Curimataú, Guaraíra-Papeba, Potengi, Galinhos-Guamaré and Piranhas-Assu having been marked with the location using GPS (Global Positioning System). The determination of humidity content and digestion of the samples were performed using methods described in the Compendium of analytical standards of the Institute Adofo Lutz (2005) and the determination of metal ions of the elements Al, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Sn and Zn were performed by optical emission spectrometry with inductively coupled plasma as described by USEPA method 6010C. The results show that it is possible to use this molluscum Mytella falcata in the estuaries of Rio Grande do Norte for the determination of metal ions. The data were subjected to principal components analysis (PCA) which enabled us to verify the distribution pattern of the metal ions studied in several estuaries potiguares and group them according to the metal ions in common with and relate them to the activities in each region

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the various layered silicates, vermiculite has been used as one of the adsorbent material by presenting the ion exchange capacity which facilitates the removal of organic compounds which are potential pollutants in relation to the water surface. The importance of the modification of clay minerals by hydrophobization with carnauba wax establishes the increase in oil removal capacity in aqueous medium, it contributes to a better environment for life in ecosystems. The vermiculite when expanded decreases its hydrophobicity requiring the use of a hydrophobizing leaving - the organoclay. In this work were used in the process of modifying the particle sizes of vermiculite -18+16, -16 +20 and -20 +35 #. Samples of vermiculite hydrophobized with carnauba wax and clay mineral without hydrophobizing were characterized with physicochemical analyzes and analytical. Techniques were used: thermal analysis (thermogravimetry and derivative thermogravimetry), infrared spectroscopy, scanning electron microscopy, fluorescence rays - x adsorption tests. The TG / DTG was used to evaluate the thermal behavior of expanded vermiculite and carnauba wax and samples hidrofobizadas with percentages of 5, 10 and 15 % by weight of hydrophobizing. The results of FTIR confirmed increase of the characteristic signs of carnauba wax in samples hidrofobizadas as the greatest amount of hydrophobizing the clay mineral used in hydrophobization. Thermogravimetry and FTIR show based on the results that coating the surface of the vermiculite occur homogeneously. The data obtained by the technique of x-ray fluorescence with loss on ignition confirmed the results of thermogravimetric analysis in relation to the percentage of wax incorporated. The fluorescence indicates through information provided by the analysis shows that the material covered - is homogeneous. The mev inspection was used to texture and morphology of the clay mineral with and without carnauba wax. The scanning electron microscopy confirms the deposition of wax evenly over the surface of the mineral as indicated by the other techniques. To verify the adsorption capacity of the clay without hydrophobizing hydrophobized and used a fixed volume of water to 1 ½ liters in each experiment with 3 g to 50 g of oil sample. The results show that better extraction of oil for the material processed corresponds to 260 % relative to the weight of the sample coated and greater than 80 % of the oil drop in the system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to obtain a biofuel similar to mineral diesel, lanthanum-incorporated SBA- 15 nanostructured materials, LaSBA-15(pH), with different Si/La molar ratios (75, 50, 25), were synthesized in a two-steps hydrothermal procedure, with pH-adjusting of the synthesis gel at 6, and were used like catalytic solids in the buriti oil thermal catalytic cracking. These solids were characterized by X-ray fluorescence (XRF), powder X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), infrared spectroscopy (FTIR), nitrogen porosimetry and ethanol dehydration, aiming to active sites identify. Taken together, the analyses indicated that the synthesis method has employed to obtain materials highly ordered mesostructures with large average pore sizes and high surface area, besides suggested that the lanthanum was incorporated in the SBA-15 both into the framework as well as within the mesopores. Catalytic dehydration of ethanol over the LaSBA-15(pH) products has shown that they have weak Lewis acid and basic functionalities, indicative of the presence of lanthanum oxide in these samples, especially on the La75SBA-15(pH) sample, which has presented the highest selectivity to ethylene. The buriti oil thermal and thermal catalytic cracking, realized from the room temperature to 450 ºC in a simple distillation system, has allowed obtaining two liquid fractions, each consisting of two phases, one aqueous and another organic, organic liquid (OL). The OL obtained from first fractions has shown high acid index, even in the thermal catalytic process. One the other hand, OL coming from second ones, called green diesel (GD), have presented low acid index, particularly that one obtained from the thermal catalytic process realized over LaSBA-15(pH) samples. The acid sites presence in these samples, associated to their large average pore sizes and high surface areas, have allowed them, especially the La75SBA-15(pH), to present deoxygenating activity in the buriti oil thermal catalytic cracking, providing an oxygenates content reduction, particularly carboxylic acids, in the GD. Furthermore, the GD comes from the second liquid fraction obtained in the buriti oil thermal catalytic cracking over this latest solid sample has shown hydrocarbons composition and physic-chemical properties similar to that mineral diesel, beyond sulfur content low

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In today`s society the use of so-called information technology and communication (ICT), is promoting a revolution in the forms of teaching and learning through the methods of distance learning courses, especially in higher education. Studies show that students in this way have great difficulties in the learning process, especially when dealing with experimental subjects that require high power of abstraction as chemistry. The goal of this work is to promote improvement in the teaching and learning in the discipline Chemistry of Life offered for the Bachelor`s Degree in Chemistry in distance UFRN. For this we analyzed evidence of the semester 2011.2, in order to identify what are the main difficulties of the students on the assessments. That`s why video lessons related to matters that create the majority of difficulties for students were developed, the final product this work. Being obtained the improvements by video classes in the learning process of the students, from a questionnaire answered by the students in the virtual learning environment, and from their success rate at the end of the course

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work was to carry out a study on the adsorption of hydrogen sulfide (H2S) in arrays synthesized from a commercial clay mineral formed by a mixture of dolomite and quartz. To produce the ion exchange matrix were made using aqueous solutions of salts of cobalt II chloride hexahydrate (CoCl2.6H2O) II cadmium nitrate tetrahydrate (Cd (NO3)2.4H2O) I mercuric chloride (HgCl) nitrate and chromium III pentahydrate (Cr (NO3)3.5H2O). The arrays were subjected to hydrogen sulphide gas passage for one hour. To check the amount of gas adsorbed was used gravimetric process. The best result was in the adsorption matrix doped with cadmium and the solution retained for a longer time than the largest amount of H2S was the cobalt matrix. The matrix unmodified exhibited poor adsorption capacity. The characterization of the matrices were used XRD, XRF and IV. Mother with cadmium showed a high capacity in ion exchange, because the percentage of cadmium increased from 0% to 81.38% by replacing atoms of calcium and silicon which increased from 96.54% to 17.56% and 15, 72% to 0.32%, respectively, but also the best performance in adsorption of H2S adsorbing 11.89507 mg per gram of matrix

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Were synthesized systems Ni0,5Zn0,5Fe2O4, i0,2Zn0,5Mn0,3Fe2O4, Mn0,5Zn0,5Fe2O4, Ni0,5Mg0,5Fe2O4, Ni0,2Cu0,3Zn0,5Fe2O4 and Ni0,2Cu0,3Zn0,5Mg0,08Fe2O4, the precursors citrate method. The decomposition of the precursors was studied by thermogravimetric analysis and spectroscopy in the infrared region, the temperature of 350°C/3h. The evolution of the phases formed after calcinations at 350, 500, 900 and 1100ºC/3h was accompanied by X-ray diffraction using the Rietveld refinement to better identify the structures formed. The materials were also analyzed by scanning electron microscopy, magnetic measurements and analysis of the reflectivity of the material. The samples calcined at different temperatures showed an increase of crystallinity with increasing calcination temperature, verifying that for some compositions at temperatures above 500°C precipitates of second phase such as hematite and CuO. The compositions of manganese present in the structure diffusion processes slower due to the ionic radius of manganese is greater than for other ions substitutes, a fact that delays the stabilization of spinel structure and promotes the precipitation of second phase. The compositions presented with copper precipitation CuO phase at a temperature of 900 and 1100ºC/3h This occurs according to the literature because the concentration of copper in the structure is greater than 0.25 mol%. The magnetic measurements revealed features of a soft ferrimagnetic material, resulting in better magnetic properties for the NiZn ferrite and NiCuZnMg at high temperatures. The reflectivity measurements showed greater absorption of electromagnetic radiation in the microwave band for the samples calcined at 1100ºC/3h, which has higher crystallite size and consequently the formation of multi-domain, increasing the magnetization of the material. The results of absorption agreed with the magnetic measurements, indicating among the ferrites studied, those of NiZn and NiCuZnMg as better absorbing the incident radiation.