999 resultados para Bubble frequency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimal feedback control of broadband frequency up-conversion in BBO crystal is experimentally demonstrated by shaping femto-second laser pulses based on genetic algorithm, and the frequency up-conversion efficiency can be enhanced by similar to 16%. SPIDER results show that the optimal laser pulses have shorter pulse-width with the little negative chirp than the original pulse with the little positive chirp. By modulating the fundamental spectral phase with periodic square distribution on SLM-256, the frequency up-conversion can be effectively controlled by the factor of about 17%. The experimental results indicate that the broadband frequency up-conversion efficiency is related to both of second harmonic generation (SHG) and sum frequency generation (SFG), where the former depends on the fundamental pulse intensity, and the latter depends on not only the fundamental pulse intensity but also the fundamental pulse spectral phase. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental question in neuroscience is how distributed networks of neurons communicate and coordinate dynamically and specifically. Several models propose that oscillating local networks can transiently couple to each other through phase-locked firing. Coherent local field potentials (LFP) between synaptically connected regions is often presented as evidence for such coupling. The physiological correlates of LFP signals depend on many anatomical and physiological factors, however, and how the underlying neural processes collectively generate features of different spatiotemporal scales is poorly understood. High frequency oscillations in the hippocampus, including gamma rhythms (30-100 Hz) that are organized by the theta oscillations (5-10 Hz) during active exploration and REM sleep, as well as sharp wave-ripples (SWRs, 140-200 Hz) during immobility or slow wave sleep, have each been associated with various aspects of learning and memory. Deciphering their physiology and functional consequences is crucial to understanding the operation of the hippocampal network.

We investigated the origins and coordination of high frequency LFPs in the hippocampo-entorhinal network using both biophysical models and analyses of large-scale recordings in behaving and sleeping rats. We found that the synchronization of pyramidal cell spikes substantially shapes, or even dominates, the electrical signature of SWRs in area CA1 of the hippocampus. The precise mechanisms coordinating this synchrony are still unresolved, but they appear to also affect CA1 activity during theta oscillations. The input to CA1, which often arrives in the form of gamma-frequency waves of activity from area CA3 and layer 3 of entorhinal cortex (EC3), did not strongly influence the timing of CA1 pyramidal cells. Rather, our data are more consistent with local network interactions governing pyramidal cells' spike timing during the integration of their inputs. Furthermore, the relative timing of input from EC3 and CA3 during the theta cycle matched that found in previous work to engage mechanisms for synapse modification and active dendritic processes. Our work demonstrates how local networks interact with upstream inputs to generate a coordinated hippocampal output during behavior and sleep, in the form of theta-gamma coupling and SWRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The triggering of wave-breaking in a three-dimensional laser plasma wake (bubble) is investigated. The Coulomb potential from a nanowire is used to disturb the wake field to initialize the wave-breaking. The electron acceleration becomes more stable and the laser power needed for self-trapping is lowered. Three-dimensional particle-in-cell simulations were performed. Electrons with a charge of about 100 pC can be accelerated stably to energy about 170 MeV with a laser energy of 460 mJ. The first step towards tailoring the electron beam properties such as the energy, energy spread, and charge is discussed. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton trapping and acceleration by an electron bubble-channel structure in laser interaction with high-density plasma is investigated by using three-dimensional particle-in-cell simulations. It is shown that protons can be trapped, bunched, and efficiently accelerated for appropriate laser and plasma parameters, and the proton acceleration is enhanced if the plasma consists mainly of heavier ions such as tritium. The observed results are analyzed and discussed in terms of a one-dimensional analytical three-component-plasma wake model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental demonstrations and theoretical analyses of a new electromechanical energy conversion process which is made feasible only by the unique properties of superconductors are presented in this dissertation. This energy conversion process is characterized by a highly efficient direct energy transformation from microwave energy into mechanical energy or vice versa and can be achieved at high power level. It is an application of a well established physical principle known as the adiabatic theorem (Boltzmann-Ehrenfest theorem) and in this case time dependent superconducting boundaries provide the necessary interface between the microwave energy on one hand and the mechanical work on the other. The mechanism which brings about the conversion is another known phenomenon - the Doppler effect. The resonant frequency of a superconducting resonator undergoes continuous infinitesimal shifts when the resonator boundaries are adiabatically changed in time by an external mechanical mechanism. These small frequency shifts can accumulate coherently over an extended period of time to produce a macroscopic shift when the resonator remains resonantly excited throughout this process. In addition, the electromagnetic energy in s ide the resonator which is proportional to the oscillation frequency is al so accordingly changed so that a direct conversion between electromagnetic and mechanical energies takes place. The intrinsically high efficiency of this process is due to the electromechanical interactions involved in the conversion rather than a process of thermodynamic nature and therefore is not limited by the thermodynamic value.

A highly reentrant superconducting resonator resonating in the range of 90 to 160 MHz was used for demonstrating this new conversion technique. The resonant frequency was mechanically modulated at a rate of two kilohertz. Experimental results showed that the time evolution of the electromagnetic energy inside this frequency modulated (FM) superconducting resonator indeed behaved as predicted and thus demonstrated the unique features of this process. A proposed usage of FM superconducting resonators as electromechanical energy conversion devices is given along with some practical design considerations. This device seems to be very promising in producing high power (~10W/cm^3) microwave energy at 10 - 30 GHz.

Weakly coupled FM resonator system is also analytically studied for its potential applications. This system shows an interesting switching characteristic with which the spatial distribution of microwave energies can be manipulated by external means. It was found that if the modulation was properly applied, a high degree (>95%) of unidirectional energy transfer from one resonator to the other could be accomplished. Applications of this characteristic to fabricate high efficiency energy switching devices and high power microwave pulse generators are also found feasible with present superconducting technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface resistance and the critical magnetic field of lead electroplated on copper were studied at 205 MHz in a half-wave coaxial resonator. The observed surface resistance at a low field level below 4.2°K could be well described by the BCS surface resistance with the addition of a temperature independent residual resistance. The available experimental data suggest that the major fraction of the residual resistance in the present experiment was due to the presence of an oxide layer on the surface. At higher magnetic field levels the surface resistance was found to be enhanced due to surface imperfections.

The attainable rf critical magnetic field between 2.2°K and T_c of lead was found to be limited not by the thermodynamic critical field but rather by the superheating field predicted by the one-dimensional Ginzburg-Landau theory. The observed rf critical field was very close to the expected superheating field, particularly in the higher reduced temperature range, but showed somewhat stronger temperature dependence than the expected superheating field in the lower reduced temperature range.

The rf critical magnetic field was also studied at 90 MHz for pure tin and indium, and for a series of SnIn and InBi alloys spanning both type I and type II superconductivity. The samples were spherical with typical diameters of 1-2 mm and a helical resonator was used to generate the rf magnetic field in the measurement. The results of pure samples of tin and indium showed that a vortex-like nucleation of the normal phase was responsible for the superconducting-to-normal phase transition in the rf field at temperatures up to about 0.98-0.99 T_c' where the ideal superheating limit was being reached. The results of the alloy samples showed that the attainable rf critical fields near T_c were well described by the superheating field predicted by the one-dimensional GL theory in both the type I and type II regimes. The measurement was also made at 300 MHz resulting in no significant change in the rf critical field. Thus it was inferred that the nucleation time of the normal phase, once the critical field was reached, was small compared with the rf period in this frequency range.