980 resultados para Bruce Sheldon
Resumo:
Ocean observing has been recognized by the US Commission on Ocean Policy, the Ocean Research and Resources Advisory Panel, the Joint Ocean Commission Initiative, and many other ocean policy entities and initiatives as foundational to meeting the nation’s need for more effective coastal and ocean management. The Interim Report of the Interagency Task Force on Ocean Policy (September 2009) has called for strengthening the nation’s capacity for observing the nation’s ocean, coastal, and Great Lakes systems. (PDF contains 3 pages)
Resumo:
The South Carolina Coastal Information Network (SCCIN) emerged as a result of a number of coastal outreach institutions working in partnership to enhance coordination of the coastal community outreach efforts in South Carolina. This organized effort, led by the S.C. Sea Grant Consortium and its Extension Program, includes partners from federal and state agencies, regional government agencies, and private organizations seeking to coordinate and/or jointly deliver outreach programs that target coastal community constituents. The Network was officially formed in 2006 with the original intention of fostering intra-and inter- agency communication, coordination, and cooperation. Network partners include the S.C. Sea Grant Consortium, S.C. Department of Health and Environmental Control – Office of Ocean and Coastal Resource Management and Bureau of Water, S.C. Department of Natural Resources – ACE Basin National Estuarine Research Reserve, North Inlet-Winyah Bay National Estuarine Research Reserve, Clemson University Cooperative Extension Service and Carolina Clear, Berkeley-Charleston-Dorchester Council of Governments, Waccamaw Regional Council of Governments, Urban Land Institute of South Carolina, S.C. Department of Archives and History, the National Oceanic and Atmospheric Administration – Coastal Services Center and Hollings Marine Laboratory, Michaux Conservancy, Ashley-Cooper Stormwater Education Consortium, the Coastal Waccamaw Stormwater Education Consortium, the S.C. Chapter of the U.S. Green Building Council, and the Lowcountry Council of Governments. (PDF contains 3 pages)
Resumo:
Past workers in this group as well as in others have made considerable progress in the understanding and development of the ring-opening metathesis polymerization (ROMP) technique. Through these efforts, ROMP chemistry has become something of an organometallic success story. Extensive work was devoted to trying to identify the catalytically active species in classical reaction mixtures of early metal halides and alkyl aluminum compounds. Through this work, a mechanism involving the interconversion of metal carbenes and metallacyclobutanes was proposed. This preliminary work finally led to the isolation and characterization of stable metal carbene and metallacyclobutane complexes. As anticipated, these well-characterized complexes were shown to be active catalysts. In a select number of cases, these catalysts have been shown to catalyze the living polymerization of strained rings such as norbornene. The synthetic control offered by these living systems places them in a unique category of metal catalyzed reactions. To take full advantage of these new catalysts, two approaches should be explored. The first takes advantage of the unusual fact that all of the unsaturation present in the monomer is conserved in the polymer product. This makes ROMP techniques ideal for the synthesis of highly unsaturated, and fully conjugated polymers, which find uses in a variety of applications. This area is currently under intense investigation. The second aspect, which should lend itself to fruitful investigations, is expanding the utility of these catalysts through the living polymerization of monomers containing interesting functional groups. Polymer properties can be dramatically altered by the incorporation of functional groups. It is this latter aspect which will be addressed in this work.
After a general introduction to both the ring-opening metathesis reaction (Chapter 1) and the polymerization of fuctionalized monomers by transition metal catalysts (Chapter 2), the limits of the existing living ROMP catalysts with functionalized monomers are examined in Chapter 3. Because of the stringent limitations of these early metal catalysts, efforts were focused on catalysts based on ruthenium complexes. Although not living, and displaying unusually long induction periods, these catalysts show high promise for future investigations directed at the development of catalysts for the living polymerization of functionalized monomers. In an attempt to develop useful catalysts based on these ruthenium complexes, efforts to increase their initiation rates are presented in Chapter 4. This work eventually led to the discovery that these catalysts are highly active in aqueous solution, providing the opportunity to develop aqueous emulsion ROMP systems. Recycling the aqueous catalysts led to the discovery that the ruthenium complexes become more activated with use. Investigations of these recycled solutions uncovered new ruthenium-olefin complexes, which are implicated in the activation process. Although our original goal of developing living ROMP catalysts for the polymerization of fuctionalized monomers is yet to be realized, it is hoped that this work provides a foundation from which future investigations can be launched.
In the last chapter, the ionophoric properties of the poly(7-oxanobornene) materials is briefly discussed. Their limited use as acyclic host polymers led to investigations into the fabrication of ion-permeable membranes fashioned from these materials.
Resumo:
The asymmetric construction of quaternary stereocenters is a topic of great interest in the organic chemistry community given their prevalence in natural products and biologically active molecules. Over the last decade, the Stoltz group has pursued the synthesis of this challenging motif via a palladium-catalyzed allylic alkylation using chiral phosphinooxazoline (PHOX) ligands. Recent results indicate that the alkylation of lactams and imides consistently proceeds with enantioselectivities substantially higher than any other substrate class previously examined in this system. This observation prompted exploration of the characteristics that distinguish these molecules as superior alkylation substrates, resulting in newfound insights and marked improvements in the allylic alkylation of carbocyclic compounds.
General routes to cyclopentanoid and cycloheptanoid core structures have been developed that incorporate the palladium-catalyzed allylic alkylation as a key transformation. The unique reactivity of α-quaternary vinylogous esters upon addition of hydride or organometallic reagents enables divergent access to γ-quaternary acylcyclopentenes or cycloheptenones through respective ring contraction or carbonyl transposition pathways. Derivatization of the resulting molecules provides a series of mono-, bi-, and tricyclic systems that can serve as valuable intermediates for the total synthesis of complex natural products.
The allylic alkylation and ring contraction methodology has been employed to prepare variably functionalized bicyclo[5.3.0]decane molecules and enables the enantioselective total syntheses of daucene, daucenal, epoxydaucenal B, and 14-p-anisoyloxydauc-4,8-diene. This route overcomes the challenge of accessing β-substituted acylcyclopentenes by employing a siloxyenone to effect the Grignard addition and ring opening in a single step. Subsequent ring-closing metathesis and aldol reactions form the hydroazulene core of these targets. Derivatization of a key enone intermediate allows access to either the daucane sesquiterpene or sphenobolane diterpene carbon skeletons, as well as other oxygenated scaffolds.
Resumo:
To explain the ^(26)Mg isotopic anomaly seen in meteorites (^(26)Al daughter) as well as the observation of 1809-keV γ rays in the interstellar medium (live decay of 26Al) one must know, among other things, the destruction rate of ^(26)Al. Properties of states in ^(27)Si just above the ^(26)Al + p mass were investigated to determine the destruction rate of ^(26)Al via the ^(26)Al(p,γ)^(27)Si reaction at astrophysical temperatures.
Twenty micrograms of ^(26)Al were used to produce two types of Al_2O_3 targets by evaporation of the oxide. One was onto a thick platinum backing suitable for (p,γ) work, and the other onto a thin carbon foil for the (^3He,d) reaction.
The ^(26)Al(p,γ)^(27)Si excitation function, obtained using a germanium detector and voltage-ramped target, confirmed known resonances and revealed new ones at 770, 847, 876, 917, and 928 keV. Possible resonances below the lowest observed one at E_p = 286 keV were investigated using the ^(26)Al(^3He,d)^(27)Si proton-transfer reaction. States in 27Si corresponding to 196- and 286-keV proton resonances were observed. A possible resonance at 130 keV (postulated in prior work) was shown to have a strength of wγ less than 0.02 µeV.
By arranging four large Nal detector as a 47π calorimeter, the 196-keV proton resonance, and one at 247 keV, were observed directly, having wγ = 55± 9 and 10 ± 5 µeV, respectively.
Large uncertainties in the reaction rate have been reduced. At novae temperatures, the rate is about 100 times faster than that used in recent model calculations, casting some doubt on novae production of galactic ^(26)Al.
Resumo:
The purpose of this work is to extend experimental and theoretical understanding of horizontal Bloch line (HBL) motion in magnetic bubble materials. The present theory of HBL motion is reviewed, and then extended to include transient effects in which the internal domain wall structure changes with time. This is accomplished by numerically solving the equations of motion for the internal azimuthal angle ɸ and the wall position q as functions of z, the coordinate perpendicular to the thin-film material, and time. The effects of HBL's on domain wall motion are investigated by comparing results from wall oscillation experiments with those from the theory. In these experiments, a bias field pulse is used to make a step change in equilibrium position of either bubble or stripe domain walls, and the wall response is measured by using transient photography. During the initial response, the dynamic wall structure closely resembles the initial static structure. The wall accelerates to a relatively high velocity (≈20 m/sec), resulting in a short (≈22 nsec ) section of initial rapid motion. An HBL gradually forms near one of the film surfaces as a result of local dynamic properties, and moves along the wall surface toward the film center. The presence of this structure produces low-frequency, triangular-shaped oscillations in which the experimental wall velocity is nearly constant, vs≈ 5-8 m/sec. If the HBL reaches the opposite surface, i.e., if the average internal angle reaches an integer multiple of π, the momentum stored in the HBL is lost, and the wall chirality is reversed. This results in abrupt transitions to overdamped motion and changes in wall chirality, which are observed as a function of bias pulse amplitude. The pulse amplitude at which the nth punch- through occurs just as the wall reaches equilibrium is given within 0.2 0e by Hn = (2vsH'/γ)1/2 • (nπ)1/2 + Hsv), where H' is the effective field gradient from the surrounding domains, and Hsv is a small (less than 0.03 0e), effective drag field. Observations of wall oscillation in the presence of in-plane fields parallel to the wall show that HBL formation is suppressed by fields greater than about 40 0e (≈2πMs), resulting in the high-frequency, sinusoidal oscillations associated with a simple internal wall structure.
Resumo:
The two lowest T = 3/2 levels in 21Na have been studied in the 19F(3He, n), 20Ne (p,p) and 20Ne (p,p’) reactions, and their excitation energies, spins, parities and widths have been determined. In a separate investigation, branching ratios were measured for the isospin-nonconserving particle decays of the lowest T = 3/2 levels in 17O and 17F to the ground state and first two excited states of 16O, by studying the 15N(3He,n) 17F*(p) 16O and 18O(3He, α)17O*(n) 16O reactions.
The 19F(3He,n) 21Na reaction was studied at incident energies between 4.2 and 5.9 MeV using a pulsed-beam neutron-time-of-flight spectrometer. Two T = 3/2 levels were identified at excitation energies of 8.99 ± 0.05 MeV (J > ½) and 9.22 ± 0.015 MeV (J π = ½+, Γ ˂ 40 keV). The spins and parities were determined by a comparison of the measured angular distributions with the results of DWBA calculations.
These two levels were also obsesrved as isospin-forbidden resonances in the 20Ne(p,p) and 20Ne(p,p’) reactions. Excitation energies were measured and spins, parities, and widths were determined from a single level dispersion theory analysis. The following results were obtained:
Ex = 8.973 ± 0.007 MeV, J π = 5/2 + or 3/2+, Γ ≤ 1.2 keV,
Γpo = 0.1 ± 0.05 keV; Ex = 9.217 ± 0.007 MeV, Jπ = ½ +,
Γ = 2.3 ± 0.5 keV, Γpo = 1.1 ± 0.3 keV.
Isospin assignments were made on the basis of excitation energies, spins, parities, and widths.
Branching ratios for the isospin-nonconserving proton decays of the 11.20 MeV, T = 3/2 level in 17F were measured by the 15N(3He,n) 17 F*(p) 16O reaction to be 0.088 ± 0.016 to the ground state of 16O and 0.22 ± 0.04 to the unresolved 6.05 and 6.13 MeV levels of 16O. Branching ratios for the neutron decays of the analogous T = 3/2 level, at 11.08 MeV in 17O, were measured by the 16O(3He, α)17O*(n)16O reaction to be 0.91 ± 0.15 to the ground state of 16O and 0.05 ± 0.02 to the unresolved 6.05 and 6.13 MeV states. By comparing the ratios of reduced widths for the mirror decays, the form of the isospin impurity in the T = 3/2 levels is shown to depend on Tz.
Resumo:
I. PREAMBLE AND SCOPE
Brief introductory remarks, together with a definition of the scope of the material discussed in the thesis, are given.
II. A STUDY OF THE DYNAMICS OF TRIPLET EXCITONS IN MOLECULAR CRYSTALS
Phosphorescence spectra of pure crystalline naphthalene at room temperature and at 77˚ K are presented. The lifetime of the lowest triplet 3B1u state of the crystal is determined from measurements of the time-dependence of the phosphorescence decay after termination of the excitation light. The fact that this lifetime is considerably shorter in the pure crystal at room temperature than in isotopic mixed crystals at 4.2˚ K is discussed, with special importance being attached to the mobility of triplet excitons in the pure crystal.
Excitation spectra of the delayed fluorescence and phosphorescence from crystalline naphthalene and anthracene are also presented. The equation governing the time- and spatial-dependence of the triplet exciton concentration in the crystal is discussed, along with several approximate equations obtained from the general equation under certain simplifying assumptions. The influence of triplet exciton diffusion on the observed excitation spectra and the possibility of using the latter to investigate the former is also considered. Calculations of the delayed fluorescence and phosphorescence excitation spectra of crystalline naphthalene are described.
A search for absorption of additional light quanta by triplet excitons in naphthalene and anthracene crystals failed to produce any evidence for the phenomenon. This apparent absence of triplet-triplet absorption in pure crystals is attributed to a low steady-state triplet concentration, due to processes like triplet-triplet annihilation, resulting in an absorption too weak to be detected with the apparatus used in the experiments. A comparison of triplet-triplet absorption by naphthalene in a glass at 77˚ K with that by naphthalene-h8 in naphthalene-d8 at 4.2˚ K is given. A broad absorption in the isotopic mixed crystal triplet-triplet spectrum has been tentatively interpreted in terms of coupling between the guest 3B1u state and the conduction band and charge-transfer states of the host crystal.
III. AN INVESTIGATION OF DELAYED LIGHT EMISSION FROM Chlorella Pyrenoidosa
An apparatus capable of measuring emission lifetimes in the range 5 X 10-9 sec to 6 X 10-3 sec is described in detail. A cw argon ion laser beam, interrupted periodically by means of an electro-optic shutter, serves as the excitation source. Rapid sampling techniques coupled with signal averaging and digital data acquisition comprise the sensitive detection and readout portion of the apparatus. The capabilities of the equipment are adequately demonstrated by the results of a determination of the fluorescence lifetime of 5, 6, 11, 12-tetraphenyl-naphthacene in benzene solution at room temperature. Details of numerical methods used in the final data reduction are also described.
The results of preliminary measurements of delayed light emission from Chlorella Pyrenoidosa in the range 10-3 sec to 1 sec are presented. Effects on the emission of an inhibitor and of variations in the excitation light intensity have been investigated. Kinetic analysis of the emission decay curves obtained under these various experimental conditions indicate that in the millisecond-to-second time interval the decay is adequately described by the sum of two first-order decay processes. The values of the time constants of these processes appear to be sensitive both to added inhibitor and to excitation light intensity.
Resumo:
We measured the recoil proton polarization in the process γp → pη at the 1.5 GeV Caltech electron synchrotron, at photon energies from 0.8 to 1.1 GeV, and at center-of-mass production angles around 90°. A counter-spark chamber array was used to determine the kinematics of all particles in the final state of the partial mode γp → pη (η → 2γ). The protons' polarization was determined by measuring an asymmetry in scattering off carbon. Analysis of 280,000 pictures yielded 2400 useful scatters with a background which was 30% of the foreground. The polarization results show a sizeable opposite parity interference at 830 MeV, 950 MeV, and 1100 MeV.
Resumo:
Several types of seismological data, including surface wave group and phase velocities, travel times from large explosions, and teleseismic travel time anomalies, have indicated that there are significant regional variations in the upper few hundred kilometers of the mantle beneath continental areas. Body wave travel times and amplitudes from large chemical and nuclear explosions are used in this study to delineate the details of these variations beneath North America.
As a preliminary step in this study, theoretical P wave travel times, apparent velocities, and amplitudes have been calculated for a number of proposed upper mantle models, those of Gutenberg, Jeffreys, Lehman, and Lukk and Nersesov. These quantities have been calculated for both P and S waves for model CIT11GB, which is derived from surface wave dispersion data. First arrival times for all the models except that of Lukk and Nersesov are in close agreement, but the travel time curves for later arrivals are both qualitatively and quantitatively very different. For model CIT11GB, there are two large, overlapping regions of triplication of the travel time curve, produced by regions of rapid velocity increase near depths of 400 and 600 km. Throughout the distance range from 10 to 40 degrees, the later arrivals produced by these discontinuities have larger amplitudes than the first arrivals. The amplitudes of body waves, in fact, are extremely sensitive to small variations in the velocity structure, and provide a powerful tool for studying structural details.
Most of eastern North America, including the Canadian Shield has a Pn velocity of about 8.1 km/sec, with a nearly abrupt increase in compressional velocity by ~ 0.3 km/sec near at a depth varying regionally between 60 and 90 km. Variations in the structure of this part of the mantle are significant even within the Canadian Shield. The low-velocity zone is a minor feature in eastern North America and is subject to pronounced regional variations. It is 30 to 50 km thick, and occurs somewhere in the depth range from 80 to 160 km. The velocity decrease is less than 0.2 km/sec.
Consideration of the absolute amplitudes indicates that the attenuation due to anelasticity is negligible for 2 hz waves in the upper 200 km along the southeastern and southwestern margins of the Canadian Shield. For compressional waves the average Q for this region is > 3000. The amplitudes also indicate that the velocity gradient is at least 2 x 10-3 both above and below the low-velocity zone, implying that the temperature gradient is < 4.8°C/km if the regions are chemically homogeneous.
In western North America, the low-velocity zone is a pronounced feature, extending to the base of the crust and having minimum velocities of 7.7 to 7.8 km/sec. Beneath the Colorado Plateau and Southern Rocky Mountains provinces, there is a rapid velocity increase of about 0.3 km/sec, similar to that observed in eastern North America, but near a depth of 100 km.
Complicated travel time curves observed on profiles with stations in both eastern and western North America can be explained in detail by a model taking into account the lateral variations in the structure of the low-velocity zone. These variations involve primarily the velocity within the zone and the depth to the top of the zone; the depth to the bottom is, for both regions, between 140 and 160 km.
The depth to the transition zone near 400 km also varies regionally, by about 30-40 km. These differences imply variations of 250 °C in the temperature or 6 % in the iron content of the mantle, if the phase transformation of olivine to the spinel structure is assumed responsible. The structural variations at this depth are not correlated with those at shallower depths, and follow no obvious simple pattern.
The computer programs used in this study are described in the Appendices. The program TTINV (Appendix IV) fits spherically symmetric earth models to observed travel time data. The method, described in Appendix III, resembles conventional least-square fitting, using partial derivatives of the travel time with respect to the model parameters to perturb an initial model. The usual ill-conditioned nature of least-squares techniques is avoided by a technique which minimizes both the travel time residuals and the model perturbations.
Spherically symmetric earth models, however, have been found inadequate to explain most of the observed travel times in this study. TVT4, a computer program that performs ray theory calculations for a laterally inhomogeneous earth model, is described in Appendix II. Appendix I gives a derivation of seismic ray theory for an arbitrarily inhomogeneous earth model.
Resumo:
The hydroxyketone C-3, an intermediate in the stereo-selective total synthesis of dl-Desoxypodocarpic acid (ii), has been shown by both degradative and synthetic pathways to rearrange in the presence of base to diosphenol E-1 (5-isoabietic acid series). The exact spatial arrangements of the systems represented by formulas C-3 and E-1 have been investigated (as the p-bromobenzoates) by single-crystal X-ray diffraction analyses. The hydroxyketone F-1, the proposed intermediate in the rearrangement, has been synthesized. Its conversion to diosphenol E-1 has been studied, and a single-crystal analysis of the p-bromobenzoate derivative has been performed. The initially desired diosphenol C-6 has been prepared, and has been shown to be stable to the potassium t-butoxide rearrangement conditions. Oxidative cleavage of diosphenol E-1 and subsequent cyclization with the aid of polyphosphoric acid has been shown to lead to keto acid I-2 (benzobicyclo [3.3.1] nonane series) rather than keto acid H-2 (5-isoabietic acid series).
Resumo:
Part I
The physical phenomena which will ultimately limit the packing density of planar bipolar and MOS integrated circuits are examined. The maximum packing density is obtained by minimizing the supply voltage and the size of the devices. The minimum size of a bipolar transistor is determined by junction breakdown, punch-through and doping fluctuations. The minimum size of a MOS transistor is determined by gate oxide breakdown and drain-source punch-through. The packing density of fully active bipolar or static non-complementary MOS circuits becomes limited by power dissipation. The packing density of circuits which are not fully active such as read-only memories, becomes limited by the area occupied by the devices, and the frequency is limited by the circuit time constants and by metal migration. The packing density of fully active dynamic or complementary MOS circuits is limited by the area occupied by the devices, and the frequency is limited by power dissipation and metal migration. It is concluded that read-only memories will reach approximately the same performance and packing density with MOS and bipolar technologies, while fully active circuits will reach the highest levels of integration with dynamic MOS or complementary MOS technologies.
Part II
Because the Schottky diode is a one-carrier device, it has both advantages and disadvantages with respect to the junction diode which is a two-carrier device. The advantage is that there are practically no excess minority carriers which must be swept out before the diode blocks current in the reverse direction, i.e. a much faster recovery time. The disadvantage of the Schottky diode is that for a high voltage device it is not possible to use conductivity modulation as in the p i n diode; since charge carriers are of one sign, no charge cancellation can occur and current becomes space charge limited. The Schottky diode design is developed in Section 2 and the characteristics of an optimally designed silicon Schottky diode are summarized in Fig. 9. Design criteria and quantitative comparison of junction and Schottky diodes is given in Table 1 and Fig. 10. Although somewhat approximate, the treatment allows a systematic quantitative comparison of the devices for any given application.
Part III
We interpret measurements of permittivity of perovskite strontium titanate as a function of orientation, temperature, electric field and frequency performed by Dr. Richard Neville. The free energy of the crystal is calculated as a function of polarization. The Curie-Weiss law and the LST relation are verified. A generalized LST relation is used to calculate the permittivity of strontium titanate from zero to optic frequencies. Two active optic modes are important. The lower frequency mode is attributed mainly to motion of the strontium ions with respect to the rest of the lattice, while the higher frequency active mode is attributed to motion of the titanium ions with respect to the oxygen lattice. An anomalous resonance which multi-domain strontium titanate crystals exhibit below 65°K is described and a plausible mechanism which explains the phenomenon is presented.
Resumo:
X-ray diffraction measurements and subsequent data analyses have been carried out on liquid argon at five states in the density range of 0.91 to 1.135 gm/cc and temperature range of 127 to 143°K. Duplicate measurements were made on all states. These data yielded radial distribution and direct correlation functions which were then used to compute the pair potential using the Percus-Yevick equation. The potential minima are in the range of -105 to -120°K and appear to substantiate current theoretical estimates of the effective pair potential in the presence of a weak three-body force.
The data analysis procedure used was new and does not distinguish between the coherent and incoherent absorption factors for the cell scattering which were essentially equal. With this simplification, the argon scattering estimate was compared to the gas scattering estimate on the laboratory frame of reference and the two estimates coincided, indicating the data normalized. The argon scattering on the laboratory frame of reference was examined for the existence of the peaks in the structure factor and the existence of an observable third peak was considered doubtful.
Numerical studies of the effect of truncation, normalization, the subsidiary peak phenomenon in the radial distribution function, uncertainties in the low angle data relative to errors in the direct correlation function and the distortion phenomenon are presented.
The distortion phenomenon for this experiment explains why the Mikolaj-Pings argon data yielded pair potential well depths from the Percus-Yevick equation that were too shallow and an apparent slope with respect to density that was too steep compared to theoretical estimates.
The data presented for each measurement are: empty cell and cell plus argon intensity, absorption factors, argon intensity, smoothed argon intensity, smoothed argon intensity corrected for distortion, structure factor, radial distribution function, direct correlation function and the pair potential from the Percus-Yevick equation.
Resumo:
The purpose of the project is to improve our understanding about best management practices that can be utilized on diked managed wetlands in Suisun Marsh for reducing the occurrence of low dissolved oxygen (DO) and high methylmercury (MeHg) events associated primarily with fall flood-up practices. Low DO events are of concern because they can lead to undue stress and even mortality of sensitive aquatic organisms. Elevated MeHg levels are of concern because MeHg is a neurotoxin that bio-magnifies up the food chain and can cause deleterious effects to higher trophic level consumers such as piscivorous fish, birds, and mammals (including humans). This study involved two years (2007-2008) of intensive field data collection at two managed wetland sites in northwest Suisun Marsh and their surrounding tidal sloughs, an area with prior documented low DO events. In addition, the study collected limited soils and water quality field data and mapped vegetation for three managed wetland sites in the central interior of Suisun Marsh, for the purpose of examining whether wetlands at other locations exhibit characteristics that could indicate potential for similar concerns. In Year 1 of the study, the objective was to identify the baseline conditions in the managed wetlands and determine which physical management conditions could be modified for Year 2 to reduce low DO and MeHg production issues most effectively. The objective of Year 2 was to evaluate the effectiveness of these modified management actions at reducing production of low DO and elevated MeHg conditions within the managed wetlands and to continue improving understanding of the underlying biogeochemical processes at play. This Final Evaluation Memorandum examined a total of 19 BMPs, 14 involving modified water management operations and the remaining five involving modified soil and vegetation management practices. Some of these BMPs were previously employed and others have not yet been tested. For each BMP this report assesses its efficacy in improving water quality conditions and potential conflicts with wetland management. It makes recommendations for further study (either feasibility assessments or field testing) and whether to consider for future use. Certain previously used BMPs were found to be important contributors to poor water quality conditions and their continued use is not recommended. Some BMPs that could improve water quality conditions appear difficult to implement in regards to compatibility with wetland management; these BMPs require further elaboration and feasibility assessment to determine whether they should be field tested. In practice for any given wetland, there is likely a combination of BMPs that would together have the greatest potential to address the low DO and high MeHg water quality concerns. Consequently, this report makes no sweeping recommendations applicable to large groups of wetlands but instead promotes a careful consideration of factors at each wetland or small groups of wetlands and from that assessment to apply the most effective suite of BMPs. This report also identifies a number of recommended future actions and studies. These recommendations are geared toward improving the process understanding of factors that promote low DO and high MeHg conditions, the extent of these problems in Suisun Marsh, the regulatory basis for the DO standards for a large estuarine marsh, the economics of BMPs, and alternative approaches to BMPs on diked managed wetlands that may address the water quality issues. The most important of these recommendations is that future BMP implementation should be carried out within the context of rigorous scientific evaluation so as to gain the maximum improvement in how to manage these water quality issues in the diked managed wetlands of Suisun Marsh.