982 resultados para Body sensitivity
Resumo:
Several methods are available for coding body movement in nonverbal behavior research, but there is no consensus on a reliable coding system that can be used for the study of emotion expression. Adopting an integrative approach, we developed a new method, the Body Action and Posture (BAP) coding system, for the time-aligned micro description of body movement on an anatomical level (different articulations of body parts), a form level (direction and orientation of movement), and a functional level (communicative and self-regulatory functions). We applied the system to a new corpus of acted emotion portrayals, examined its comprehensiveness and demonstrated intercoder reliability at three levels: a) occurrence, b) temporal precision and c) segmentation. We discuss issues for further validation and propose some research applications.
Resumo:
OBJECTIVE: To evaluate the impact of body position on the arterial stiffness indices provided by radial applanation tonometry in pregnant and nonpregnant women. METHODS: Twenty-four young women (18-30 years) in the third trimester of a normal pregnancy and 20 healthy nonpregnant women of the same age were enrolled. In each, applanation tonometry was carried out in the sitting and supine position. The following stiffness indices were analyzed: systolic augmentation index (sAix), sAix adjusted for heart rate (sAix@75) and diastolic augmentation index (dAix), all expressed in % of central aortic pulse pressure. RESULTS: The sAix was apparently not influenced by body position, but the transition from seated to supine was associated with a substantial decrease in heart rate. When correcting for this confounder by calculating the sAix@75, systolic augmentation was substantially lower when individuals were supine (mean ± SD: nonpregnant 3.0 ± 14.4%, pregnant 8.8 ± 9.7%) than when they were sitting (nonpregnant 5.7 ± 13.0%, pregnant 11.1 ± 83%, P = 0.005 supine vs. seated in both study groups, P > 0.2 for pregnant vs. nonpregnant). The influence of body position on the dAix went in the opposite direction (supine: nonpregnant 9.7 ± 6.6%, pregnant 4.4 ± 3.5%; seated: nonpregnant 7.7 ± 5.8%, pregnant 3.3 ± 2.4%, P < 0.00001 supine vs. seated in both study groups, P = 0.001 for pregnant vs. nonpregnant). CONCLUSION: Body position has a major impact on the pattern of central aortic pressure augmentation by reflected waves in healthy young women examined either during third trimester pregnancy or in the nonpregnant state.
Resumo:
Fabry disease is caused by a deficiency of a-galactosidase A which leads to the progressive intra-lysosomal accumulation of ceramide trihexoside (CTH), also known as globotriaosylceramide (Gb3), in different cell types and body fluids. The clinical manifestations are multisystemic and predominantly affect the heart, kidney and central nervous system. The role of CTH in the pathophysiological process of Fabry disease is not established, and the link between the degree of accumulation and disease manifestations is not systematic. The use of CTH as a diagnostic tool has been proposed for several decades. The recent introduction of a specific treatment for Fabry disease in the form of enzyme replacement therapy (ERT) has led to the need for a biological marker, in place of a clinical sign, for evaluating the efficacy of treatment and also as a tool for following the long term effects of treatment. The ideal biomarker must adhere to strict criteria, and there should be a correlation between the degree of clinical efficacy of treatment and a change in its concentration. This review of the literature assesses the utility of CTH as a diagnostic tool and as a marker of the efficacy of ERT in patients with Fabry disease. Several techniques have been developed for measuring CTH; the principles and the sensitivity thresholds of these methods and the units used to express the results should be taken into consideration when interpreting data. The use of CTH measurement in Fabry disease should be re-evaluated in light of recent published data.
Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet.
Resumo:
OBJECTIVE-Obesity and associated pathologies are major global health problems. Transforming growth factor-beta/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic beta-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes.RESEARCH DESIGN AND METHODS-We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance.RESULTS-Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein beta-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor beta/delta and proliferator-activated receptor gamma expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid beta-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet.CONCLUSIONS-Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders.
Resumo:
In the International Olympic Committee (IOC) accredited laboratories, specific methods have been developed to detect anabolic steroids in athletes' urine. The technique of choice to achieve this is gas-chromatography coupled with mass spectrometry (GC-MS). In order to improve the efficiency of anti-doping programmes, the laboratories have defined new analytical strategies. The final sensitivity of the analytical procedure can be improved by choosing new technologies for use in detection, such as tandem mass spectrometry (MS-MS) or high resolution mass spectrometry (HRMS). A better sample preparation using immuno-affinity chromatography (IAC) is also a good tool for improving sensitivity. These techniques are suitable for the detection of synthetic anabolic steroids whose structure is not found naturally in the human body. The more and more evident use, on a large scale, of substances chemically similar to the endogenous steroids obliges both the laboratory and the sports authorities to use the steroid profile of the athlete in comparison with reference ranges from a population or with intraindividual reference values.
Resumo:
Cefotaxime, given in two doses (each 100 mg/kg of body weight), produced a good bactericidal activity (-0.47 Deltalog(10) CFU/ml. h) which was comparable to that of levofloxacin (-0.49 Deltalog(10) CFU/ml. h) against a penicillin-resistant pneumococcal strain WB4 in experimental meningitis. Cefotaxime combined with levofloxacin acted synergistically (-1.04 Deltalog(10) CFU/ml. h). Synergy between cefotaxime and levofloxacin was also demonstrated in vitro in time killing assays and with the checkerboard method for two penicillin-resistant strains (WB4 and KR4). Using in vitro cycling experiments, the addition of cefotaxime in sub-MIC concentrations (one-eighth of the MIC) drastically reduced levofloxacin-induced resistance in the same two strains (64-fold increase of the MIC of levofloxacin after 12 cycles versus 2-fold increase of the MIC of levofloxacin combined with cefotaxime). Mutations detected in the genes encoding topoisomerase IV (parC and parE) and gyrase (gyrA and gyrB) confirmed the levofloxacin-induced resistance in both strains. Addition of cefotaxime in low doses was able to suppress levofloxacin-induced resistance.
Resumo:
Surgery has historically been the standard of care for operable stage I non-small cell lung cancer (NSCLC). However, nearly one-quarter of patients with stage I NSCLC will not undergo surgery because of medical comorbidity or other factors. Stereotactic ablative radiotherapy (SABR) is the new standard of care for these patients. SABR offers high local tumour control rates rivalling the historical results of surgery and is generally well tolerated by patients with both peripheral and centrally located tumours. This article reviews the history of SABR for stage I NSCLC, summarises the currently available data on efficacy and toxicity, and describes some of the currently controversial aspects of this treatment.
Resumo:
Whole-body (WB) planar imaging has long been one of the staple methods of dosimetry, and its quantification has been formalized by the MIRD Committee in pamphlet no 16. One of the issues not specifically addressed in the formalism occurs when the count rates reaching the detector are sufficiently high to result in camera count saturation. Camera dead-time effects have been extensively studied, but all of the developed correction methods assume static acquisitions. However, during WB planar (sweep) imaging, a variable amount of imaged activity exists in the detector's field of view as a function of time and therefore the camera saturation is time dependent. A new time-dependent algorithm was developed to correct for dead-time effects during WB planar acquisitions that accounts for relative motion between detector heads and imaged object. Static camera dead-time parameters were acquired by imaging decaying activity in a phantom and obtaining a saturation curve. Using these parameters, an iterative algorithm akin to Newton's method was developed, which takes into account the variable count rate seen by the detector as a function of time. The algorithm was tested on simulated data as well as on a whole-body scan of high activity Samarium-153 in an ellipsoid phantom. A complete set of parameters from unsaturated phantom data necessary for count rate to activity conversion was also obtained, including build-up and attenuation coefficients, in order to convert corrected count rate values to activity. The algorithm proved successful in accounting for motion- and time-dependent saturation effects in both the simulated and measured data and converged to any desired degree of precision. The clearance half-life calculated from the ellipsoid phantom data was calculated to be 45.1 h after dead-time correction and 51.4 h with no correction; the physical decay half-life of Samarium-153 is 46.3 h. Accurate WB planar dosimetry of high activities relies on successfully compensating for camera saturation which takes into account the variable activity in the field of view, i.e. time-dependent dead-time effects. The algorithm presented here accomplishes this task.
Resumo:
Predictive species distribution modelling (SDM) has become an essential tool in biodiversity conservation and management. The choice of grain size (resolution) of environmental layers used in modelling is one important factor that may affect predictions. We applied 10 distinct modelling techniques to presence-only data for 50 species in five different regions, to test whether: (1) a 10-fold coarsening of resolution affects predictive performance of SDMs, and (2) any observed effects are dependent on the type of region, modelling technique, or species considered. Results show that a 10 times change in grain size does not severely affect predictions from species distribution models. The overall trend is towards degradation of model performance, but improvement can also be observed. Changing grain size does not equally affect models across regions, techniques, and species types. The strongest effect is on regions and species types, with tree species in the data sets (regions) with highest locational accuracy being most affected. Changing grain size had little influence on the ranking of techniques: boosted regression trees remain best at both resolutions. The number of occurrences used for model training had an important effect, with larger sample sizes resulting in better models, which tended to be more sensitive to grain. Effect of grain change was only noticeable for models reaching sufficient performance and/or with initial data that have an intrinsic error smaller than the coarser grain size.
Resumo:
L`electrocardiograma és la primera eina diagnòstica fàcilment disponible per la detecció de l´infart a la práctica clínica. El seu valor va ser donat principalment amb estudis antics anatomopatològics. La ressonància magnètica cardíaca actualment és la tècnica d`elecció per la detecció de l`infart. Aquest estudi investiga el valor de l`electrocardiograma ( sensibilitat i especificitat) per detectar infarts de la zona anteroseptal. Conclusiò: la sensibilitat y la especificitat de quatre patents electrocardiogràfiques de la zona anteroseptal va ser valorada. Així mateix, encara que s`observin extenses ones Q en les derivacions anteriors la necrosis és usualment limitada si VL no está afectat. 3
Resumo:
Directional selection for parasite resistance is often intense in highly social host species. Using a partial cross-fostering experiment we studied environmental and genetic variation in immune response and morphology in a highly colonial bird species, the house martin (Delichon urbica). We manipulated intensity of infestation of house martin nests by the haematophagous parasitic house martin bug Oeciacus hirundinis either by spraying nests with a weak pesticide or by inoculating them with 50 bugs. Parasitism significantly affected tarsus length, T cell response, immunoglobulin and leucocyte concentrations. We found evidence of strong environmental effects on nestling body mass, body condition, wing length and tarsus length, and evidence of significant additive genetic variance for wing length and haematocrit. We found significant environmental variance, but no significant additive genetic variance in immune response parameters such as T cell response to the antigenic phytohemagglutinin, immunoglobulins, and relative and absolute numbers of leucocytes. Environmental variances were generally greater than additive genetic variances, and the low heritabilities of phenotypic traits were mainly a consequence of large environmental variances and small additive genetic variances. Hence, highly social bird species such as the house martin, which are subject to intense selection by parasites, have a limited scope for immediate microevolutionary response to selection because of low heritabilities, but also a limited scope for long-term response to selection because evolvability as indicated by small additive genetic coefficients of variation is weak.
Resumo:
This study aimed to quantitatively describe and compare whole-body fat oxidation kinetics in cycling and running using a sinusoidal mathematical model (SIN). Thirteen moderately trained individuals (7 men and 6 women) performed two graded exercise tests, with 3-min stages and 1 km h(-1) (or 20 W) increment, on a treadmill and on a cycle ergometer. Fat oxidation rates were determined using indirect calorimetry and plotted as a function of exercise intensity. The SIN model, which includes three independent variables (dilatation, symmetry and translation) that account for main quantitative characteristics of kinetics, provided a mathematical description of fat oxidation kinetics and allowed for determination of the intensity (Fat(max)) that elicits maximal fat oxidation (MFO). While the mean fat oxidation kinetics in cycling formed a symmetric parabolic curve, the mean kinetics during running was characterized by a greater dilatation (i.e., widening of the curve, P < 0.001) and a rightward asymmetry (i.e., shift of the peak of the curve to higher intensities, P = 0.01). Fat(max) was significantly higher in running compared with cycling (P < 0.001), whereas MFO was not significantly different between modes of exercise (P = 0.36). This study showed that the whole-body fat oxidation kinetics during running was characterized by a greater dilatation and a rightward asymmetry compared with cycling. The greater dilatation may be mainly related to the larger muscle mass involved in running while the rightward asymmetry may be induced by the specific type of muscle contraction.