939 resultados para Bending crack


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews the current knowledge and understanding of martensitic transformations in ceramics - the tetragonal to monoclinic transformation in zirconia in particular. This martensitic transformation is the key to transformation toughening in zirconia ceramics. A very considerable body of experimental data on the characteristics of this transformation is now available. In addition, theoretical predictions can be made using the phenomenological theory of martensitic transformations. As the paper will illustrate, the phenomenological theory is capable of explaining all the reported microstructural and crystallographic features of the transformation in zirconia and in some other ceramic systems. Hence the theory, supported by experiment, can be used with considerable confidence to provide the quantitative data that is essential for developing a credible, comprehensive understanding of the transformation toughening process. A critical feature in transformation toughening is the shape strain that accompanies the transformation. This shape strain, or nucleation strain, determines whether or not the stress-induced martensitic transformation can occur at the tip of a potentially dangerous crack. If transformation does take place, then it is the net transformation strain left behind in the transformed region that provides toughening by hindering crack growth. The fracture mechanics based models for transformation toughening, therefore, depend on having a full understanding of the characteristics of the martensitic transformation and, in particular, on being able to specify both these strains. A review of the development of the models for transformation toughening shows that their refinement and improvement over the last couple of decades has been largely a result of the inclusion of more of the characteristics of the stress-induced martensitic transformation. The paper advances an improved model for the stress-induced martensitic transformation and the strains resulting from the transformation. This model, which separates the nucleation strain from the subsequent net transformation strain, is shown to be superior to any of the constitutive models currently available. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Because it is believed that bone may respond to exercise differently at different ages, we compared bone responses in immature and mature rats after 12 wk of treadmill running. Methods: Twenty-two immature (5-wk-old) and 21 mature (17-wk-old) female Sprague Dawley rats were randomized into a running (trained, N = 10 immature, 9 mature) or a control group (controls, N 12 immature, 12 mature) before sacrifice 12 wk later. Rats ran on a treadmill five times per week for 60-70 min at speeds up to 26 m.min(-1). Both at baseline and after intervention, we measured total body, lumbar spine, and proximal femoral bone mineral, as well as total body soft tissue composition using dual-energy x-ray absorptiometry (DXA) in vivo. After sacrificing the animals, we measured dynamic and static histomorphometry and three-point bending strength of the tibia. Results: Running training was associated with greater differences in tibial subperiosteal area, cortical cross-sectional area, peak load, stiffness, and moment of inertia in immature and mature rats (P < 0.05). The trained rats had greater periosteal bone formation rates (P < 0.01) than controls, but there was no difference in tibial trabecular bone histomorphometry. Similar running-related gains were seen in DXA lumbar spine area (P = 0.04) and bone mineral content (BMC; P = 0.03) at both ages. For total body bone area and BMC, the immature trained group increased significantly compared with controls (P < 0.05), whereas the mature trained group gained less than did controls (P < 0.01). Conclusion: In this in vivo model, where a similar physical training program was performed by immature and mature female rats, we demonstrated that both age groups were sensitive to loading and that bone strength gains appeared to result more from changes in bone geometry than from improved material properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the burst swimming performance of five species of Antarctic fish at -1.0degreesC. The species studied belonged to the suborder, Notothenioidei, and from the families, Nototheniidae and Bathydraconidae. Swimming performance of the fish was assessed over the initial 300 ms of a startle response using surgically attached miniature accelerometers. Escape responses in all fish consisted of a C-type fast start; consisting of an initial pronounced bending of the body into a C-shape, followed by one or more complete tail-beats and an un-powered glide. We found significant differences in the swimming performance of the five species of fish examined, with average maximum swimming velocities (U-max) ranging from 0.91 to 1.39 m s(-1) and maximum accelerations (A(max)) ranging from 10.6 to 15.6 m s(-2). The cryopelagic species, Pagothenia borchgrevinki, produced the fastest escape response, reaching a U-max and A(max) of 1.39 m s(-1) and 15.6 m s(-2), respectively. We also compared the body shapes of each fish species with their measures of maximum burst performance. The dragonfish, Gymnodraco acuticeps, from the family Bathdraconidae, did not conform to the pattern observed for the other four fish species belonging to the family Nototheniidae. However, we found a negative relationship between buoyancy of the fish species and burst swimming performance. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The radio frequency (RF) plasma-modified surfaces of kaolinite were investigated by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) and deuteration techniques to determine the nature of RF plasma-induced surface functional groups, the altered sites in the lattice, and interaction mechanism between RF plasma and the surface of the kaolinite. It has been concluded that the RF plasma-induced infrared (IR) vibration absorption bands at 2805, 3010, and 3100 cm(-1) are attributable to the stretching vibration of hydrogen-bonded hydroxyl groups, and the band at 1407 cm(-1) is attributable to the bending vibration of (HO-)Al-O or (HO-)Si-O groupings with hydrogen-bonded hydroxyl groups. Structural alteration occurred on both the surface and subsurface region of the kaolinite during RF plasma treatment. Further structural alteration or adjustment was also observed on well-modified and well-deuterated kaolinite. There are two types of OD bands visible in the DRIFT spectra of this kaolinite, one type which decreased rapidly as a function of time in moist air, and the other which remained unchanged during the measurement. Furthermore, the appearance of broad IR bands at 3500-3100 cm(-1) as a result of deuteration is evidence of structural disturbance by RF plasma treatment lattice deuteration. An RF plasma-induced hydrogen bonding model on the surface of the kaolinite is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a large amplitude vibration analysis of pre-stressed functionally graded material (FGM) laminated plates that are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric actuator layers. Nonlinear governing equations of motion are derived within the context of Reddy's higher-order shear deformation plate theory to account for transverse shear strain and rotary inertia. Due to the bending and stretching coupling effect, a nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the plate that is subjected to uniform temperature change, in-plane forces and applied actuator voltage. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed FGM laminated plates are derived. A semi-analytical method that is based on one-dimensional differential quadrature and Galerkin technique is proposed to predict the large amplitude vibration behavior of the laminated rectangular plates with two opposite clamped edges. Linear vibration frequencies and nonlinear normalized frequencies are presented in both tabular and graphical forms, showing that the normalized frequency of the FGM laminated plate is very sensitive to vibration amplitude, out-of-plane boundary support, temperature change, in-plane compression and the side-to-thickness ratio. The CSCF and CFCF plates even change the inherent hard-spring characteristic to soft-spring behavior at large vibration amplitudes. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A procura por madeiras oriundas de reflorestamentos destinadas à serraria é uma realidade já há muitos anos, principalmente aquelas das espécies do gênero Eucalyptus. Visando buscar novas informações importantes para esse mercado, este trabalho objetivou determinar algumas propriedades mecânicas da madeira de um híbrido clonal de Eucalyptus urophylla x Eucalyptus grandis de duas idades e provenientes de talhadia simples e de reforma. Os resultados indicaram que a madeira desse híbrido apresenta boas características tecnológicas, destacando-se a segunda tora (a partir de 3 m) com as melhores propriedades de flexão estática (Módulo de Elasticidade - MOE e Módulo de Ruptura - MOR) e Compressão Axial das fibras. As árvores de maior idade (166 meses) e que sofreram dois desbastes apresentaram as melhores propriedades de flexão estática e compressão axial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho objetivou testar a variação da flexão estática da madeira de Eucalyptus grandis, ao longo da seção radial e sob quatro diferentes idades (10, 14, 20 e 25 anos), provenientes de talhões comerciais. As amostras foram retiradas da prancha diametral, de cada uma das 16 árvores (quatro para cada idade), tomadas de quatro posições eqüidistantes (0, 33, 66 e 100%), no sentido medula-casca, com oito repetições por posição. Verificou-se que os módulos de elasticidade (MOE) e de ruptura (MOR) apresentaram valores médios de 129.230 kgf/cm2 e 854 kgf/cm2, respectivamente, e ambos se mostraram positivamente correlacionados com a idade e com a posição radial, no sentido medula-casca. Os maiores valores foram conseguidos nas madeiras de 20 anos de idade e localizadas na região mais próxima da casca.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Realizamos uma análise da atividade da Consciência Infeliz (unglücklichesBewusstsein), tal como foi exposta por G.W.F. Hegel em sua obraFenomenologia do Espírito(PhänomenologiedesGeistes), de 1807.A Consciência Infeliz é uma denominação hegeliana referente a uma consciência religiosa que se cinde em duas; um destes seus lados, ela aliena de si e tem por sua essência que reside no além, o Imutável; ao outro lado, ela mesma, assevera como o Mutável, inessente, residente no aquém. Toda a sua atividade resume-se a unir isto que ela põe como o infinitamente desunido, a saber, ela e sua essência, pois a consciência ainda não é ciente de que esta essência absoluta que ela opôs a si mesma nada mais é do que ela mesma. Isto resulta num tender singular para seu objeto Universal absoluto e ao mesmo tempo não querer maculá-lo com esta sua singularidade; numa atividade que deve absolutamente ser e não-ser, busca de algo que não pode nem deve ser buscado. Enquanto herdeira do pensamento estóico e cético, a Consciência Infeliz aparece como consciência contraditória, curvada sobre si mesma e sempre dolorida, que além de efetivar um movimento de negação para com o mundo do aquém e tudo o que lhe diz respeito, busca se libertar da dor que é ser portadora desta contraditoriedade que surge justamente daquela sua atitude negativa. A fim de que possamos fundamentar esta atitude Infeliz, realizamos em nosso primeiro capítulo uma investigação acerca de suas características peculiares nas esferas anteriores ao seu aparecimento, a saber, a esfera do Entendimento (Verstand), a dialética do Senhor e do Escravo e do Estoicismo e Ceticismo. No segundo capítulo, discorremos acerca do conceito e da atividade da Consciência Infeliz, bem como procuramos investigar a necessidade de sua superação a partir de uma análise de sua suprassunção no momento da Razão (Vernunft). Por fim, em nosso terceiro e último capítulo, procuramos refletir sobre em que medida se poderia afirmar que as consciências contemporâneas continuam agindo de maneira infeliz, e para tanto, nos apoiamos em breves leituras de S. Freud, pensador do ―mal-estar‖ moderno e Z.Bauman, pensador do ―mal-estar‖ contemporâneo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os métodos de análise de estruturas de contenção de solo reforçado sob condições de trabalho, em geral, desconsideram a contribuição da face para o equilíbrio da estrutura. Visando estudar a influência do peso específico da face e das propriedades relacionadas à rigidez da mesma sobre o desempenho das estruturas de solo reforçado, são realizadas simulações numéricas de diversas estruturas, utilizando a versão de dupla precisão do programa CRISP92-SC. Avalia-se, também, o emprego de diferentes tipos de elementos para a representação da face. Verifica-se que a face rígida impõe redução significativa das solicitações máximas de tração nos reforços e dos deslocamentos das estruturas de solo reforçado. A influência do peso específico da face sobre a estabilidade interna dos maciços reforçados mostrase desprezível e constata-se que a rigidez à flexão e a rigidez axial da face, função da sua geometria e do seu módulo de Young, são parâmetros influentes no comportamento das estruturas de contenção de solo reforçado. As variações da tração no reforço e da resultante de força cortante na face, em decorrência do enrijecimento da face, são analisadas e propõe-se uma relação entre elas. Quanto à forma de representação de uma face com rigidez expressiva, na simulação de uma estrutura de solo reforçado com o CRISP92-SC, é observado que a representação da face, seja por elementos de viga, seja por elementos quadriláteros, não altera os resultados da análise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have employed molecular dynamics simulations to study the behavior of virtual polymeric materials under an applied uniaxial tensile load. Through computer simulations, one can obtain experimentally inaccessible information about phenomena taking place at the molecular and microscopic levels. Not only can the global material response be monitored and characterized along time, but the response of macromolecular chains can be followed independently if desired. The computer-generated materials were created by emulating the step-wise polymerization, resulting in self-avoiding chains in 3D with controlled degree of orientation along a certain axis. These materials represent a simplified model of the lamellar structure of semi-crystalline polymers,being comprised of an amorphous region surrounded by two crystalline lamellar regions. For the simulations, a series of materials were created, varying i) the lamella thickness, ii) the amorphous region thickness, iii) the preferential chain orientation, and iv) the degree of packing of the amorphous region. Simulation results indicate that the lamella thickness has the strongest influence on the mechanical properties of the lamella-amorphous structure, which is in agreement with experimental data. The other morphological parameters also affect the mechanical response, but to a smaller degree. This research follows previous simulation work on the crack formation and propagation phenomena, deformation mechanisms at the nanoscale, and the influence of the loading conditions on the material response. Computer simulations can improve the fundamental understanding about the phenomena responsible for the behavior of polymeric materials, and will eventually lead to the design of knowledge-based materials with improved properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermoplastic elastomer/carbon nanotube composites are studied for sensor applications due to their excellent mechanical and electrical properties. Piezoresisitive properties of tri-block copolymer styrene-butadiene-styrene (SBS)/ carbon nanotubes (CNT) prepared by solution casting have been investigated. Young modulus of the SBS/CNT composites increases with the amount of CNT filler content present in the samples, without losing the high strain deformation on the polymer matrix (~1500 %). Further, above the percolation threshold these materials are unique for the development of large deformation sensors due to the strong piezoresistive response. Piezoresistive properties evaluated by uniaxial stretching in tensile mode and 4-point bending showed a Gauge Factors up to 120. The excellent linearity obtained between strain and electrical resistance makes these composites interesting for large strain piezoresistive sensors applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pectus excavatum is the most common deformity of the thorax. A minimally invasive surgical correction is commonly carried out to remodel the anterior chest wall by using an intrathoracic convex prosthesis in the substernal position. The process of prosthesis modeling and bending still remains an area of improvement. The authors developed a new system, i3DExcavatum, which can automatically model and bend the bar preoperatively based on a thoracic CT scan. This article presents a comparison between automatic and manual bending. The i3DExcavatum was used to personalize prostheses for 41 patients who underwent pectus excavatum surgical correction between 2007 and 2012. Regarding the anatomical variations, the soft-tissue thicknesses external to the ribs show that both symmetric and asymmetric patients always have asymmetric variations, by comparing the patients’ sides. It highlighted that the prosthesis bar should be modeled according to each patient’s rib positions and dimensions. The average differences between the skin and costal line curvature lengths were 84 ± 4 mm and 96 ± 11 mm, for male and female patients, respectively. On the other hand, the i3DExcavatum ensured a smooth curvature of the surgical prosthesis and was capable of predicting and simulating a virtual shape and size of the bar for asymmetric and symmetric patients. In conclusion, the i3DExcavatum allows preoperative personalization according to the thoracic morphology of each patient. It reduces surgery time and minimizes the margin error introduced by the manually bent bar, which only uses a template that copies the chest wall curvature.