955 resultados para BIS(IMINO)PYRIDYL IRON(II)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexes [Ru(1-C=C-1,10-C2B8H9)(dppe)Cp*] (3a), [Ru(1-C C-1,12-C2B10H11)(dppe)-Cp*] (3b), [{Ru(dppe)Cp*}(2){mu-1,10-(C C)(2)-1,10-C2B8H8}] (4a) and [{Ru(dppe)Cp*}(2){mu-1,12-(C C)2- 1,12-C2B10-H-10}] (4b), which form a representative series of mono- and bimetallic acetylide complexes featuring 10- and 12-vertex carboranes embedded within the dethynyl bridging ligand, have been prepared and structurally characterized. In addition, these compounds have been examined spectroscopically (UV-is-NIR, IR) in all accessible redox states. The significant separation of the two, one-electron anodic waves observed in the cyclic voltammograms of the bimetallic complexes 4a and 4b is largely independent of the nature of the electrolyte and is attributed to stabilization of the intermediate redox products [4a](+) and [4b](+) through interactions between the metal centers across a distance of ca. 12.5 angstrom. The mono-oxidized bimetallic complexes (4a](+) and [4b](+) exhibit spectroscopic properties consistent with a description of these species in terms of valence-localized (class II) mixed-valence compounds, including a unique low-energy electronic absorption band, attributed to an, IVCT-type transition that tails into the IR region. DFT calculations with model systems [4a-H](+) and [4b-H](+) featuring simplified ligand sets reproduce the observed spectroscopic data and localized electronic structures for the mixed-valence cations [4a](+) and [4b](+).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New N-(3-aminopropyl) (L-1, L-2) and (2-cyanoethyl) (L-3, L-4) derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized. The protonation constants of L-1 and L-2 and the stability constants of their complexes with Ni2+, Cu2+, Zn2+ and Cd2+ metal ions were determined in aqueous solutions by potentiometry, at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO3. Both compounds have high overall basicity due to the presence of the aminopropyl arms. Their copper(II) complexes exhibit very high stability constants, which sharply decrease for the complexes of the other studied metal ions, as usually happens with polyamine ligands. Mono- and dinuclear complexes are formed with L-2 as well as with L-1, but the latter exhibits mononuclear complexes with slightly higher K-ML values while the dinuclear complexes of L-2 are thermodynamically more stable. The presence of these species in solution was supported by UV-VIS-NIR and EPR spectroscopic data. The single crystal structures of [Cu(H2L2)(ClO4)](3+) and [(CoLCl)-Cl-3](+) revealed that the metal centres are surrounded by the four nitrogen atoms of the macrocycle and one monodentate ligand, adopting distorted square pyramidal geometries. In the [(CoLCl)-Cl-3](+) complex, the macrocycle adopts a folded arrangement with the nitrogen atom opposite to the pyridine at the axial position while in the [Cu(H2L2)(ClO4)](3+) complex, the macrocycle adopts a planar conformation with the three aminopropyl arms located at the same side of the macrocyclic plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six ruthenium(II) complexes have been prepared using the tridentate ligands 2,6-bis(benzimidazolyl) pyridine and bis(2-benzimidazolyl methyl) amine and having 2,2'-bipyridine, 2,2':6',2 ''-terpyridine, PPh3, MeCN and chloride as coligands. The crystal structures of three of the complexes trans-[Ru(bbpH(2))(PPh3)(2)(CH3CN)I(ClO4)(2) center dot 2H(2)O (2), [Ru(bbpH(2))(bpy)Cl]ClO4 (3) and [Ru(bbpH(2))(terpy)](ClO4)(2) (4) are also reported. The complexes show visible region absorption at 402-517 nm, indicating that it is possible to tune the visible region absorption by varying the ancillary ligand. Luminescence behavior of the complexes has been studied both at RT and at liquid nitrogen temperature (LNT). Luminescence of the complexes is found to be insensitive to the presence of dioxygen. Two of the complexes [Ru(bbpH(2))(bpy)Cl]ClO4 (3) and [Ru(bbpH(2))(terpy]ClO4)(2) (4) show RT emission in the NIR region, having lifetime, quantum yield and radiative constant values suitable for their application as NIR emitter in the solid state devices. The DFT calculations on these two complexes indicate that the metal t(2g) electrons are appreciably delocalized over the ligand backbone. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three di-Schiff-base ligands, N,N'-bis(salicylidene)-1,3-propanediamine (H(2)Salpn), N,N'-bis(salicylidene)-1,3-pentanedianiine (H(2)Salpen) and N,N'-bis(salicylidine)-ethylenediamine (H(2)Salen) react with Ni(SCN)(2). 4H(2)O in 2:3 molar ratios to form the complexes; mononuclear [Ni(HSalpn)(NCS)(H2O)]center dot H2O (1a), trinuclear [{Ni(Salpen)}(2)Ni(NCS)(2)] (2b) and trinuclear [{Ni(Salen)}(2)Ni(NCS)(2)] (3) respectively. All the complexes have been characterized by elemental analyses, IR and UV-VIS spectra, and room temperature magnetic susceptibility measurements. The structures of la and 2b have been confirmed by X-ray single crystal analysis. In complex la, the Ni(II) atom is coordinated equatorially by the tetradentate, mononegative Schiff-base, HSalpn. Axial coordination of isothiocyanate group and a water molecule completes its octahedral geometry. The hydrogen atom attached to one of the oxygen atoms of the Schiff base is involved in a very strong hydrogen bond with a neighboring unit to form a centrosymmetric dimer. In 2b, two square planar [Ni(Salpen)] units act as bide mate oxygen donor ligands to a central Ni(II) which is also coordinated by two mutually cis N-bonded thiocyanate ligands to complete its distorted octahedral geometry. Complex 3 possesses a similar structure to that of 2b. A dehydrated form of la and a hydrated form of 2b have been obtained and characterized. The importance of electronic and steric factors in the variation of the structures is discussed. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new linear trinuclear nickel(II) complexes, [Ni-3(salpen)(2)(OAc)(2)(H2O)(2)]center dot 4H(2)O (1) (OAc = acetate, CH3COO-), [Ni-3(salpen)(2)(OBz)(2)] (2) (OBz=benzoate, PhCOO-) and [Ni-3(salpen)(2)(OCn)(2)(CH3CN)(2)] (4) (OCn = cinnamate, PhCH=CHCOO-), H(2)salpen = tetradentate ligand, N,N'-bis(salicylidene)-1,3-pentanediamine have been synthesized and characterized structurally and magnetically. The choice of solvent for growing single crystal was made by inspecting the morphology of the initially obtained solids with the help of SEM study. The magnetic properties of a closely related complex, [Ni-3(salpen)(2)(OPh)(2)(EtOH)] (3) (OPh = phenyl acetate, PhCH2COO-) whose structure and solution properties have been reported recently, has also been studied here. The structural analyses reveal that both phenoxo and carboxylate bridging are present in all the complexes and the three Ni(II) atoms remain in linear disposition. Although the Schiff base ligand and the syn-syn bridging bidentate mode of the carboxylate group remain the same in complexes 1-4, the change of alkyl/aryl group of the carboxylates brings about systematic variations between six- and five-coordination in the geometry of the terminal Ni(II) centres of the trinuclear units. The steric demand as well as hydrophobic nature of the alkyl/aryl group of the carboxylate is found to play a crucial role in the tuning of the geometry. Variable-temperature (2-300 K) magnetic susceptibility measurements show that complexes 1-4 are antiferromagnetically coupled (J = -3.2(1), -4.6(1). -3.2(1) and -2.8(1) cm(-1) in 1-4, respectively). Calculations of the zero-field splitting parameter indicate that the values of D for complexes 1-4 are in the high range (D = +9.1(2), +14.2(2), +9.8(2) and +8.6(1) cm(-1) for 1-4, respectively). The highest D value of +14.2(2) and +9.8(2) cm(-1) for complexes 2 and 3, respectively, are consistent with the pentacoordinated geometry of the two terminal nickel(II) ions in 2 and one terminal nickel(II) ion in 3. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dinuclear copper(II) complex, (mu2-MeOH)bis(mu(2)-phenoxide)dicopper complex with N-(3-aminopropyl)salicylaidimine, has been synthesised and characterised by X-ray structure determination. Variable temperature magnetic susceptibility measurement shows that it is strongly antiferromagnetically coupled. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The blue coloured complex [Cu(HL)(H2O)(ClO4)]ClO.H2O.MeOH (1.H2O.MeOH) has been synthesised in excellent yields by reacting Cu(ClO4)(2).6H(2)O with N,N-bis(2-methylpyridyl)(3,5-dimethyl-2-hydroxybenzyl)amine (HL) in methanol. The same reaction, when carried out in the presence of sodium azide, afforded a dark-blue complex of formula [Cu-2(HL)(2)(mu-1,1-N-3)(2)](ClO4)(2) (2). The crystal and molecular structures of the complexes have been solved. Variable-temperature magnetic susceptibility data in the range of 2-300 K for 2 reveal the existence of an antiferromagnetic interaction through an end-on azido linker. Temperature-dependent susceptibility studies for 2 were fitted using the Bleaney-Bowers expression, which led to the parameters J = -3.2 cm(-1), g = 2.12 and R = 2.14 x 10(-4). (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three kinds of copper(II) azide complexes have been synthesised in excellent yields by reacting Cu(ClO4)(2) . 6H(2)O with N,N-bis(2-pyridylmethyl)amine (L-1); N-(2-pyridylmethyl)-N',N'-dimethylethylenediamine (L-2); and N-(2-pyridylmethyl)-N',N'-diethylethylenediamine (L-3), respectively, in the presence of slight excess of sodium azide. They are the monomeric Cu(L-1)(N-3)(ClO4) (1), the end-to-end diazido-bridged Cu-2(L-2)(2)(mu-1,3-N-3)(2)(ClO4)(2) (2) and the single azido-bridged (mu-1,3-) 1D chain [Cu(L-3)(mu-1,3-N-3)](n)(ClO4)(n) (3). The crystal and molecular structures of these complexes have been solved. The variable temperature magnetic moments of type 2 and type 3 complexes were studied. Temperature dependent susceptibility for 2 was fitted using the Bleaney-Bowers expression which led to the parameters J = -3.43 cm(-1) and R = 1 X 10(-5). The magnetic data for 3 were fitted to Baker's expression for S = 1/2 and the parameters obtained were J = 1.6 cm(-1) and R = 3.2 x 10(-4). Crystal data are as follows. Cu(L-1)(N-3)(ClO4): Chemical formula, C12H13ClN6O4Cu; crystal system, monoclinic; space group, P2(1)/c; a = 8.788(12), b = 13.045(15), c = 14.213(15) Angstrom; beta = 102.960(10)degrees; Z = 4. Cu(L-2)(mu-N-3)(ClO4): Chemical formula. C10H17ClN6O4Cu: crystal system, monoclinic; space group, P2(1)/c; a = 10.790(12), b = 8.568(9), c = 16.651(17) Angstrom; beta = 102.360(10)degrees; Z = 4. [Cu(L-3)(mu-N-3)](ClO4): Chemical formula, C12H21ClN6O4Cu; crystal system, monoclinic; space group, P2(1)/c; a = 12.331(14), b = 7.804(9), c = 18.64(2) Angstrom; beta = 103.405(10)degrees; Z = 4. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two mononuclear and one dinuclear copper(II) complexes, containing neutral tetradentate NSSN type ligands, of formulation [Cu-II(L-1)Cl]ClO4 (1), [Cu-II(L-2)Cl]ClO4 (2) and [Cu-2(II)(L-3)(2)Cl-2](ClO4)(2) (3) were synthesized and isolated in pure form [where L-1 = 1,2-bis(2-pyridylmethylthio)ethane, L-2 = 1,3-bis(2-pyridylmethylthio)propane and L-3 = 1,4-bis(2-pyridylmethylthio)butane]. All these green colored copper(II) complexes were characterized by physicochemical and spectroscopic methods. The dinuclear copper(II) complex 3 changed to a colorless dinuclear copper(I) species of formula [Cu-2(1)(L-3)(2)](ClO4)(2),0.5H(2)O (4) in dimethylformamide even in the presence of air at ambient temperature, while complexes I and 2 showed no change under similar conditions. The solid-state structures of complexes 1, 2 and 4 were established by X-ray crystallography. The geometry about the copper in complexes 1 and 2 is trigonal bipyramidal whereas the coordination environment about the copper(I) in dinuclear complex 4 is distorted tetrahedral. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding of NO to iron is involved in the biological function of many heme proteins. Contrary to ligands like CO and O-2, which only bind to ferrous (Fe-II) iron, NO binds to both ferrous and ferric (Fe-II) iron. In a particular protein, the natural oxidation state can therefore be expected to be tailored to the required function. Herein, we present an ob initio potential-energy surface for ferric iron interacting with NO. This potential-energy surface exhibits three minima corresponding to eta'-NO coordination (the global minimum), eta(1)-ON coordination and eta(2) coordination. This contrasts with the potential-energy surface for Fe-II-NO, which ex- hibits only two minima (the eta(2) coordination mode for Fe-II is a transition state, not a minimum). In addition, the binding energies of NO are substantially larger for Fe-III than for Fe-II. We have performed molecular dynamics simulations for NO bound to ferric myoglobin (Mb(III)) and compare these with results obtained for Mb(II). Over the duration of our simulations (1.5 ns), all three binding modes are found to be stable at 200 K and transiently stable at 300 K, with eventual transformation to the eta(1)-NO global-minimum conformation. We discuss the implication of these results related to studies of rebinding processes in myoglobin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the search for a versatile building block that allows the preparation of heteroditopic tpy-pincer bridging ligands, the synthon 14'-[C6H3(CH2Br)(2)-3,5]-2,2':6',2 ''-terpyridine was synthesized. Facile introduction of diphenylphosphanyl groups in this synthon gave the ligand 14'-[C6H3(CH2PPh2)2-3,5]-2,2':6',2"-terpyridine) ([tpyPC(H)Pj). The asymmetric mononuclear complex [Fe(tpy){tpyPC(H)P}](PF6)(2), prepared by selective coordination of [Fe(tpy)Cl-3] to the tpy moiety of [tpyPC(H)P], was used for the synthesis of the heterodimetallic complex [Fe(tpy)(tpyPCP)Ru(tpy)](PFC,)3, which applies the "complex as ligand" approach. Coordination of the ruthenium centre at the PC(H)P-pincer moiety of [Fe(tpy){tpyPC(H)P}](PF6)(2) has been achieved by applying a transcyclometallation procedure. The ground-state electronic properties of both complexes, investigated by cyclic and square-wave voltammetries and UV/Vis spectroscopy, are discussed and compared with those of [Fe(tPY)(2)](PF6)(2) and [Ru(PCP)(tpy)]Cl, which represent the mononuclear components of the heterodinuclear species. An in situ UV/Vis spectroelectrochemical study was performed in order to localize the oxidation and reduction steps and to gain information about the Fe-II-Ru-II communication in the heterodimetallic system [Fe(tpy)(tpyPCP)Ru(tpy)](PF6)(3) mediated by the bridging ligand [tpyPCP]. Both the voltammetric and spectroelectrochemical results point to only very limited electronic interaction between the metal centres in the ground state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dinuclear complex [(tpy)Ru-II(PCP-PCP)Ru-II(tPY)]Cl-2 (bridging PCP-PCP = 3,3',5,5'-tetrakis(diphenylphosphinomethyl)biphenyl, [C6H2(CH2PPh2)(2)-3,5](2)(2-)) was prepared via a transcyclometalation reaction of the bis-pincer ligand [PC(H)P-PC(H)P] and the Ru(II) precursor [Ru(NCN)(tpy)]Cl (NCN = [C6H3(CH2NMe2)(2)-2,6](-)) followed by a reaction with 2,2':6',2 ''-terpyridine (tpy). Electrochemical and spectroscopic properties of [(tpy)Ru-II(PCP-PCP)Ru-II(tPY)]Cl-2 are compared with those of the closely related [(tpy)Ru-II(NCN-NCN)Ru-II(tpy)](PF6)(2) (NCN-NCN = [C6H2(CH2- NMe2)(2)-3,5](2)(2-)) obtained by two-electron reduction of [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](PF6)(4). The molecular structure of the latter complex has been determined by single-crystal X-ray structure determination. One-electron reduction of [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](PF6)(4) and one-electron oxidation of [(tpy)Ru-II(PCP-PCP)RUII(tpy)]Cl-2 yielded the mixed-valence species [(tpy)Ru-III(NCN-NCN)RUII(tpy)](3+) and [(tpy)Ru-III(PCP-PCP)RUII(tpy)](3+), respectively. The comproportionation equilibrium constants K-c (900 and 748 for [(tpy)Ru-III(NCN-NCN)Ru-III(tpy)](4+) and [(tpy)Ru-II(PCP-PCP)RUII(tpy)](2+), respectively) determined from cyclic voltammetric data reveal comparable stability of the [Ru-III-Ru-II] state of both complexes. Spectroelectrochemical measurements and near-infrared (NIR) spectroscopy were employed to further characterize the different redox states with special focus on the mixed-valence species and their NIR bands. Analysis of these bands in the framework of Hush theory indicates that the mixed-valence complexes [(tpy)Ru-III(PCP-PCP)RUII(tpy)](3+) and [(tpy)Ru-III(NCN-NCN)RUII(tpy)](3+) belong to strongly coupled borderline Class II/Class III and intrinsically coupled Class III systems, respectively. Preliminary DFT calculations suggest that extensive delocalization of the spin density over the metal centers and the bridging ligand exists. TD-DFT calculations then suggested a substantial MLCT character of the NIR electronic transitions. The results obtained in this study point to a decreased metal-metal electronic interaction accommodated by the double-cyclometalated bis-pincer bridge when strong sigma-donor NMe2 groups are replaced by weak sigma-donor, pi-acceptor PPh2 groups

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The syntheses and characterizations of several complexes containing ferrocenylethynyl and ferrocene-1,1'-bis(ethynyl) groups attached to M(PP)Cp'[M = Fe, Ru, PP = dppe, Cp'= Cp*; M = Ru, Os, PP = (PPh3)(2), dppe, Cp' = Cp] are described. Reactions with tetracyanoethene have given either tetracyanobuta-1,3-dienyl or eta(3)-allylic derivatives, while addition of Me+ afforded the corresponding vinylidene derivatives. Some electrochemical measurements are discussed in terms of electronic communication between the redox-active M(PP)Cp' groups through the ferrocene nucleus. The molecular structures of 14 of these complexes have been determined by crystallographic methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two homometallic complexes containing two and three ruthenium polypyridyl units linked by amino acid lysine (Lys) and the related dipeptide (LysLys) were synthesized and their electrochemical, spectroscopic, and electrochemiluminescence (ECL) properties were investigated. The electrochemical and photophysical data indicate that the two metal complexes largely retain the electronic properties of the reference compound for the separate ruthenium moieties in the two bridged complexes, [4-carboxypropyl-4'-methyl-2,2'-bipyridine]bis(2,2'-bipyridine)ruthenium(II) complex. The ECL studies, performed in aqueous media in the presence of tri-n-propylamine as co-reactant, show that the ECL intensity increases by 30% for the dinuclear and trinuclear complexes compared to the reference. Heterogeneous ECL immunoassay studies, performed on larger dendritic complexes containing up to eight ruthenium units, demonstrate that limitations due to the slow diffusion can easily be overcome by means of nanoparticle technology. In this case, the ECL signal is proportional to the number of ruthenium units. Multimetallic systems with several ruthenium centers may, however, undergo nonspecific bonding,to streptavidin-coated particles or to antibodies, thereby increasing the background ECL intensity and lowering the sensitivity of the immunoassay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two series of zinc(II) complexes of two Schiff bases (H2L1 and H2L2) formulated as [Zn(HL1/HL2)]ClO4 (1a and 1b) and [Zn(L1/L2)] (2a and 2b), where H2L1 = 1,8-bis(salicylideneamino)-3,6-dithiaoctane and H2L2 = 1,9-bis(salicylideneamino)-3,7-dithianonane, have been prepared and isolated in pure form by changing the chemical environment. Elemental, spectral, and other physicochemical results characterize the complexes. A single crystal X-ray diffraction study confirms the structure of [Zn(HL1)]ClO4 (1a). In 1a, zinc(II) has a distorted octahedral environment with a ZnO2N2S2 chromophore.