665 resultados para BENCHMARKING
Resumo:
The article investigates the division between member states of the European Union considering the aspect of their level of information and communication technology (ICT) development focusing on e-learning. With the help of discriminant analysis the countries are categorized into groups based on their ICT maturity and e-learning literacy level of development. Making a comparison with a benchmarking tool, the ITU (International Telecommunication Union)’s ICT Development Index (IDI) the results are confirmed partly correct. The article tries to find economical explanations for the re-grouping of the countries ranking. Finally the author examines the reliability of Hungary’s ranking results and the factors which may affect this divergence from the real picture.
Resumo:
An implementation of Sem-ODB—a database management system based on the Semantic Binary Model is presented. A metaschema of Sem-ODB database as well as the top-level architecture of the database engine is defined. A new benchmarking technique is proposed which allows databases built on different database models to compete fairly. This technique is applied to show that Sem-ODB has excellent efficiency comparing to a relational database on a certain class of database applications. A new semantic benchmark is designed which allows evaluation of the performance of the features characteristic of semantic database applications. An application used in the benchmark represents a class of problems requiring databases with sparse data, complex inheritances and many-to-many relations. Such databases can be naturally accommodated by semantic model. A fixed predefined implementation is not enforced allowing the database designer to choose the most efficient structures available in the DBMS tested. The results of the benchmark are analyzed. ^ A new high-level querying model for semantic databases is defined. It is proven adequate to serve as an efficient native semantic database interface, and has several advantages over the existing interfaces. It is optimizable and parallelizable, supports the definition of semantic userviews and the interoperability of semantic databases with other data sources such as World Wide Web, relational, and object-oriented databases. The query is structured as a semantic database schema graph with interlinking conditionals. The query result is a mini-database, accessible in the same way as the original database. The paradigm supports and utilizes the rich semantics and inherent ergonomics of semantic databases. ^ The analysis and high-level design of a system that exploits the superiority of the Semantic Database Model to other data models in expressive power and ease of use to allow uniform access to heterogeneous data sources such as semantic databases, relational databases, web sites, ASCII files, and others via a common query interface is presented. The Sem-ODB engine is used to control all the data sources combined under a unified semantic schema. A particular application of the system to provide an ODBC interface to the WWW as a data source is discussed. ^
Resumo:
Online learning systems (OLS) have become center stage for corporations and educational institutions as a competitive tool in the knowledge economy. The satisfaction construct has received extensive coverage in information systems literature as an indicator of effectiveness but has been criticized for lack of validity; yet, the value construct has been largely ignored, although it has a long history in psychology, sociology, and behavioral science. The purpose of this dissertation is to investigate the value and satisfaction constructs in the context of OLS, and their perceived by learners relationship for implied effectiveness of OLS. ^ First, a qualitative phase is employed to gather OLS values from learners' focus groups, followed by a pilot phase to refine a proposed instrument, and a main phase to validate the survey. Responses were received from 75 students in four focus groups, 141 in the pilot, and 207 the main survey. Extensive data cleaning and exploratory factor analysis were done to identify factors of learners' perceived value and satisfaction of OLS. Then, Value-Satisfaction grids and the Learners' Value Index of Satisfaction (LeVIS) were developed as benchmarking tools of OLS. Moreover, Multicriteria Decision Analysis (MCDA) techniques were employed to impute value from satisfaction scores in order to reduce survey response time. ^ The results provided four satisfaction and four value factors with high reliability (Cronbach's α). Moreover, value and satisfaction were found to have low linear and nonlinear correlations, indicating that they are two distinct uncorrelated constructs. This is consistent with the literature. Value-Satisfaction grids and the LeVIS index indicated relatively high effectiveness for technology and support characteristics, relatively low effectiveness for professor's characteristics, while course and learner characteristics indicated average effectiveness. ^ The main contributions of this study include identifying, defining, and articulating the relationship between value and satisfaction constructs as assessment of users' implied IS effectiveness, as well as assessing the accuracy of MCDA procedures to predict value scores, thus reducing by half the survey questionnaire size. ^
Resumo:
The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^
Resumo:
Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. ^ A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: (a) increase the efficiency of the portfolio optimization process, (b) implement large-scale optimizations, and (c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. ^ The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. ^ The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH). ^
Resumo:
Enterprise Resource Planning (ERP) systems are software programs designed to integrate the functional requirements, and operational information needs of a business. Pressures of competition and entry standards for participation in major manufacturing supply chains are creating greater demand for small business ERP systems. The proliferation of new offerings of ERP systems introduces complexity to the selection process to identify the right ERP business software for a small and medium-sized enterprise (SME). The selection of an ERP system is a process in which a faulty conclusion poses a significant risk of failure to SME’s. The literature reveals that there are still very high failure rates in ERP implementation, and that faulty selection processes contribute to this failure rate. However, the literature is devoid of a systematic methodology for the selection process for an ERP system by SME’s. This study provides a methodological approach to selecting the right ERP system for a small or medium-sized enterprise. The study employs Thomann’s meta-methodology for methodology development; a survey of SME’s is conducted to inform the development of the methodology, and a case study is employed to test, and revise the new methodology. The study shows that a rigorously developed, effective methodology that includes benchmarking experiences has been developed and successfully employed. It is verified that the methodology may be applied to the domain of users it was developed to serve, and that the test results are validated by expert users and stakeholders. Future research should investigate in greater detail the application of meta-methodologies to supplier selection and evaluation processes for services and software; additional research into the purchasing practices of small firms is clearly needed.^
Resumo:
There is growing popularity in the use of composite indices and rankings for cross-organizational benchmarking. However, little attention has been paid to alternative methods and procedures for the computation of these indices and how the use of such methods may impact the resulting indices and rankings. This dissertation developed an approach for assessing composite indices and rankings based on the integration of a number of methods for aggregation, data transformation and attribute weighting involved in their computation. The integrated model developed is based on the simulation of composite indices using methods and procedures proposed in the area of multi-criteria decision making (MCDM) and knowledge discovery in databases (KDD). The approach developed in this dissertation was automated through an IT artifact that was designed, developed and evaluated based on the framework and guidelines of the design science paradigm of information systems research. This artifact dynamically generates multiple versions of indices and rankings by considering different methodological scenarios according to user specified parameters. The computerized implementation was done in Visual Basic for Excel 2007. Using different performance measures, the artifact produces a number of excel outputs for the comparison and assessment of the indices and rankings. In order to evaluate the efficacy of the artifact and its underlying approach, a full empirical analysis was conducted using the World Bank's Doing Business database for the year 2010, which includes ten sub-indices (each corresponding to different areas of the business environment and regulation) for 183 countries. The output results, which were obtained using 115 methodological scenarios for the assessment of this index and its ten sub-indices, indicated that the variability of the component indicators considered in each case influenced the sensitivity of the rankings to the methodological choices. Overall, the results of our multi-method assessment were consistent with the World Bank rankings except in cases where the indices involved cost indicators measured in per capita income which yielded more sensitive results. Low income level countries exhibited more sensitivity in their rankings and less agreement between the benchmark rankings and our multi-method based rankings than higher income country groups.
Resumo:
This paper assesses the status of pre-disaster risk management in the case of Turkey. By focusing on the period following the catastrophic August 17, 1999 earthquake, the study benefits from USAID’s Disaster Risk Management Benchmarking Tool (DRMBT). In line with the benchmarking tool, the paper covers key developments in the four components of pre-disaster risk management, namely: risk identification, risk mitigation, risk transfer and disaster preparedness. In the end, it will present three major conclusions: (i) Although post-1999 Turkey has made some important progress in the pre-disaster phase of DRM, particularly with the enactment of obligatory earthquake insurance and tightened standards for building construction, the country is far away from substantial levels of success in DRM. (ii) In recent years, local governments have had been given more authority in the realm of DRM, however, Turkey’s approach to DRM is still predominantly centralized at the expense of successful DRM practices at the local level. (iii) While the devastating 1999 earthquake has resulted in advances in the pre-disaster components of DRM; progress has been mostly in the realm of earthquakes. Turkey’s other major disasters (landslides, floods, wild fires i.e.) also require similar attention by local and central authorities.
Resumo:
In this doctoral thesis analyzed the discursive representations of the bandit Lampião, the Lantern and his bandits gang in news mossoroenses newspapers published in the twenties of the last century (1927), when the gang invasion of the city of Mossoro in the state of Rio Grande do Norte, on June 13 of that year. To this end, we take as basis the theoretical assumptions of linguistics Textual, especially the narrower context of what is known today as Textual Analysis of the Discourses (ADT), theoretical and descriptive approach to linguistic studies of the text proposed by the French linguist Jean-Michel Adam. In this approach, we are interested in, specifically, the semantic level of the text, highlighting the notion of discursive representation, studied based on benchmarking operations, predication, modification, spatial location and temporal connection and analogy (ADAM, 2011; CASTILHO, 2010; KOCH, 2002, 2006; MARCUSCHI, 1998, 2008; NEVES, 2007; RODRIGUES, PASSEGGI & SILVA NETO, 2010). The corpus of this research consists of three reports in the twenties of the last century in newspapers The Mossoroense, Correio do Povo and the Northeast, and reconstituted through the collection held in the Municipal Museum Lauro Scotland files, Memorial Resistance Mossoro, both located in Natal, and in the news collection of Lampião newspapers in Natal, north of Rio Grande Raimundo Nonato historian. The discursive representations are built from the use of semantic analysis operations. Lampião to, the following representations are built: bandit, head of bandits, briber, defeated, Captain and Lord. To the outlaws of Lampião bunch of the following discursive representations were built: group, gang, gangsters, mates, bloodthirsty pack, brigands, bandits, criminals, burglar horde, and wild beasts. These representations reveal mainly the views of the newspapers of that time, which represented mainly the interests of traders, politicians, the government itself and generally Mossoró population.
Resumo:
The spread of wireless networks and growing proliferation of mobile devices require the development of mobility control mechanisms to support the different demands of traffic in different network conditions. A major obstacle to developing this kind of technology is the complexity involved in handling all the information about the large number of Moving Objects (MO), as well as the entire signaling overhead required to manage these procedures in the network. Despite several initiatives have been proposed by the scientific community to address this issue they have not proved to be effective since they depend on the particular request of the MO that is responsible for triggering the mobility process. Moreover, they are often only guided by wireless medium statistics, such as Received Signal Strength Indicator (RSSI) of the candidate Point of Attachment (PoA). Thus, this work seeks to develop, evaluate and validate a sophisticated communication infrastructure for Wireless Networking for Moving Objects (WiNeMO) systems by making use of the flexibility provided by the Software-Defined Networking (SDN) paradigm, where network functions are easily and efficiently deployed by integrating OpenFlow and IEEE 802.21 standards. For purposes of benchmarking, the analysis was conducted in the control and data planes aspects, which demonstrate that the proposal significantly outperforms typical IPbased SDN and QoS-enabled capabilities, by allowing the network to handle the multimedia traffic with optimal Quality of Service (QoS) transport and acceptable Quality of Experience (QoE) over time.
Resumo:
This research paper focuses on the self-declared initiatives of the four largest chocolate companies to tackle social problems within the context of establishing a sustainable supply chain. After the literature review of sustainability, supply chain management, and cocoa farming, this paper gives an assessment of the extant practices of the chocolatiers and makes a comparative analysis based on Corporate Social Responsibility (CSR) and Sustainability Reports. This paper uses a case study approach based on secondary-data. A roadmap and benchmarking of social sustainability initiatives were conducted for the supply chain management activities of the world's four largest chocolatiers. This paper analyses the extant sustainability practices of the chocolatiers and offers a model framework for comparison of the measures taken. This paper is based on self-declared secondary data. There is a chance that some practices were not documented by the case companies; or that companies claim what they don't actually do. This paper provides a framework for agricultural businesses to compare their sustainability efforts and improve the performance of their supply chains. Originality and value of this research reside in terms of both literature and methodology. The framework for analysing the social sustainability aspects of agricultural supply chains is original and gives an up-to-date view of sustainability practices. The use of secondary data to compare self-declared initiatives is also a novel approach to business sustainability research.
Resumo:
This thesis introduces two related lines of study on classification of hyperspectral images with nonlinear methods. First, it describes a quantitative and systematic evaluation, by the author, of each major component in a pipeline for classifying hyperspectral images (HSI) developed earlier in a joint collaboration [23]. The pipeline, with novel use of nonlinear classification methods, has reached beyond the state of the art in classification accuracy on commonly used benchmarking HSI data [6], [13]. More importantly, it provides a clutter map, with respect to a predetermined set of classes, toward the real application situations where the image pixels not necessarily fall into a predetermined set of classes to be identified, detected or classified with.
The particular components evaluated are a) band selection with band-wise entropy spread, b) feature transformation with spatial filters and spectral expansion with derivatives c) graph spectral transformation via locally linear embedding for dimension reduction, and d) statistical ensemble for clutter detection. The quantitative evaluation of the pipeline verifies that these components are indispensable to high-accuracy classification.
Secondly, the work extends the HSI classification pipeline with a single HSI data cube to multiple HSI data cubes. Each cube, with feature variation, is to be classified of multiple classes. The main challenge is deriving the cube-wise classification from pixel-wise classification. The thesis presents the initial attempt to circumvent it, and discuss the potential for further improvement.
Resumo:
The dissertation consists of three chapters related to the low-price guarantee marketing strategy and energy efficiency analysis. The low-price guarantee is a marketing strategy in which firms promise to charge consumers the lowest price among their competitors. Chapter 1 addresses the research question "Does a Low-Price Guarantee Induce Lower Prices'' by looking into the retail gasoline industry in Quebec where there was a major branded firm which started a low-price guarantee back in 1996. Chapter 2 does a consumer welfare analysis of low-price guarantees to drive police indications and offers a new explanation of the firms' incentives to adopt a low-price guarantee. Chapter 3 develops the energy performance indicators (EPIs) to measure energy efficiency of the manufacturing plants in pulp, paper and paperboard industry.
Chapter 1 revisits the traditional view that a low-price guarantee results in higher prices by facilitating collusion. Using accurate market definitions and station-level data from the retail gasoline industry in Quebec, I conducted a descriptive analysis based on stations and price zones to compare the price and sales movement before and after the guarantee was adopted. I find that, contrary to the traditional view, the stores that offered the guarantee significantly decreased their prices and increased their sales. I also build a difference-in-difference model to quantify the decrease in posted price of the stores that offered the guarantee to be 0.7 cents per liter. While this change is significant, I do not find the response in comeptitors' prices to be significant. The sales of the stores that offered the guarantee increased significantly while the competitors' sales decreased significantly. However, the significance vanishes if I use the station clustered standard errors. Comparing my observations and the predictions of different theories of modeling low-price guarantees, I conclude the empirical evidence here supports that the low-price guarantee is a simple commitment device and induces lower prices.
Chapter 2 conducts a consumer welfare analysis of low-price guarantees to address the antitrust concerns and potential regulations from the government; explains the firms' potential incentives to adopt a low-price guarantee. Using station-level data from the retail gasoline industry in Quebec, I estimated consumers' demand of gasoline by a structural model with spatial competition incorporating the low-price guarantee as a commitment device, which allows firms to pre-commit to charge the lowest price among their competitors. The counterfactual analysis under the Bertrand competition setting shows that the stores that offered the guarantee attracted a lot more consumers and decreased their posted price by 0.6 cents per liter. Although the matching stores suffered a decrease in profits from gasoline sales, they are incentivized to adopt the low-price guarantee to attract more consumers to visit the store likely increasing profits at attached convenience stores. Firms have strong incentives to adopt a low-price guarantee on the product that their consumers are most price-sensitive about, while earning a profit from the products that are not covered in the guarantee. I estimate that consumers earn about 0.3% more surplus when the low-price guarantee is in place, which suggests that the authorities should not be concerned and regulate low-price guarantees. In Appendix B, I also propose an empirical model to look into how low-price guarantees would change consumer search behavior and whether consumer search plays an important role in estimating consumer surplus accurately.
Chapter 3, joint with Gale Boyd, describes work with the pulp, paper, and paperboard (PP&PB) industry to provide a plant-level indicator of energy efficiency for facilities that produce various types of paper products in the United States. Organizations that implement strategic energy management programs undertake a set of activities that, if carried out properly, have the potential to deliver sustained energy savings. Energy performance benchmarking is a key activity of strategic energy management and one way to enable companies to set energy efficiency targets for manufacturing facilities. The opportunity to assess plant energy performance through a comparison with similar plants in its industry is a highly desirable and strategic method of benchmarking for industrial energy managers. However, access to energy performance data for conducting industry benchmarking is usually unavailable to most industrial energy managers. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR program, seeks to overcome this barrier through the development of manufacturing sector-based plant energy performance indicators (EPIs) that encourage U.S. industries to use energy more efficiently. In the development of the energy performance indicator tools, consideration is given to the role that performance-based indicators play in motivating change; the steps necessary for indicator development, from interacting with an industry in securing adequate data for the indicator; and actual application and use of an indicator when complete. How indicators are employed in EPA’s efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The chapter describes the data and statistical methods used to construct the EPI for plants within selected segments of the pulp, paper, and paperboard industry: specifically pulp mills and integrated paper & paperboard mills. The individual equations are presented, as are the instructions for using those equations as implemented in an associated Microsoft Excel-based spreadsheet tool.
Resumo:
Prior research has established that idiosyncratic volatility of the securities prices exhibits a positive trend. This trend and other factors have made the merits of investment diversification and portfolio construction more compelling. A new optimization technique, a greedy algorithm, is proposed to optimize the weights of assets in a portfolio. The main benefits of using this algorithm are to: a) increase the efficiency of the portfolio optimization process, b) implement large-scale optimizations, and c) improve the resulting optimal weights. In addition, the technique utilizes a novel approach in the construction of a time-varying covariance matrix. This involves the application of a modified integrated dynamic conditional correlation GARCH (IDCC - GARCH) model to account for the dynamics of the conditional covariance matrices that are employed. The stochastic aspects of the expected return of the securities are integrated into the technique through Monte Carlo simulations. Instead of representing the expected returns as deterministic values, they are assigned simulated values based on their historical measures. The time-series of the securities are fitted into a probability distribution that matches the time-series characteristics using the Anderson-Darling goodness-of-fit criterion. Simulated and actual data sets are used to further generalize the results. Employing the S&P500 securities as the base, 2000 simulated data sets are created using Monte Carlo simulation. In addition, the Russell 1000 securities are used to generate 50 sample data sets. The results indicate an increase in risk-return performance. Choosing the Value-at-Risk (VaR) as the criterion and the Crystal Ball portfolio optimizer, a commercial product currently available on the market, as the comparison for benchmarking, the new greedy technique clearly outperforms others using a sample of the S&P500 and the Russell 1000 securities. The resulting improvements in performance are consistent among five securities selection methods (maximum, minimum, random, absolute minimum, and absolute maximum) and three covariance structures (unconditional, orthogonal GARCH, and integrated dynamic conditional GARCH).
Resumo:
This paper formulates a linear kernel support vector machine (SVM) as a regularized least-squares (RLS) problem. By defining a set of indicator variables of the errors, the solution to the RLS problem is represented as an equation that relates the error vector to the indicator variables. Through partitioning the training set, the SVM weights and bias are expressed analytically using the support vectors. It is also shown how this approach naturally extends to Sums with nonlinear kernels whilst avoiding the need to make use of Lagrange multipliers and duality theory. A fast iterative solution algorithm based on Cholesky decomposition with permutation of the support vectors is suggested as a solution method. The properties of our SVM formulation are analyzed and compared with standard SVMs using a simple example that can be illustrated graphically. The correctness and behavior of our solution (merely derived in the primal context of RLS) is demonstrated using a set of public benchmarking problems for both linear and nonlinear SVMs.