926 resultados para BASIS FUNCTION NETWORK
Resumo:
Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.
Resumo:
Genome-wide association studies in bipolar disorder (BD)1 have implicated a single-nucleotide polymorphism (rs1006737, G right arrow A) in the CACNA1C gene, which encodes for the alpha 1c (CAV1.2) subunit of the voltage-gated, L-type calcium channel. Neuroimaging studies of healthy individuals report that this risk allele modulates brain function within limbic (amygdala, anterior cingulate gyrus) and hippocampal regions during tasks of reward processing2, 3 and episodic memory. Moreover, animal studies suggest that the CaV1.2 L-type calcium channels influence emotional behaviour through enhanced neurotransmission via the lateral amygdala pathway. On the basis of this evidence, we tested the hypotheses that the CACNA1C rs1006737 risk allele will modulate neural responses within predefined prefrontal and subcortical regions of interest during emotional face processing and that this effect would be amplified in BD patients.
Resumo:
IMPORTANCE Genome-wide association studies (GWASs) indicate that single-nucleotide polymorphisms in the CACNA1C and ANK3 genes increase the risk for bipolar disorder (BD). The genes influence neuronal firing by modulating calcium and sodium channel functions, respectively. Both genes modulate ?-aminobutyric acid-transmitting interneuron function and can thus affect brain regional activation and interregional connectivity. OBJECTIVE To determine whether the genetic risk for BD associated with 2 GWAS-supported risk single-nucleotide polymorphisms at CACNA1C rs1006737 and ANK3 rs10994336 is mediated through changes in regional activation and interregional connectivity of the facial affect-processing network. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional functional magnetic resonance imaging study at a research institute of 41 euthymic patients with BD and 46 healthy participants, all of British white descent. MAIN OUTCOMES AND MEASURES Blood oxygen level-dependent signal and effective connectivity measures during the facial affect-processing task. RESULTS In healthy carriers, both genetic risk variants were independently associated with increased regional engagement throughout the facial affect-processing network and increased effective connectivity between the visual and ventral prefrontal cortical regions. In contrast, BD carriers of either genetic risk variant exhibited pronounced reduction in ventral prefrontal cortical activation and visual-prefrontal effective connectivity. CONCLUSIONS AND RELEVANCE Our data demonstrate that the effect of CACNA1C rs1006737 and ANK3 rs10994336 (or genetic variants in linkage disequilibrium) on the brain converges on the neural circuitry involved in affect processing and provides a mechanism linking BD to genome-wide genetic risk variants.
Resumo:
Oxygen is a crucial molecule for cellular function. When oxygen demand exceeds supply, the oxygen sensing pathway centred on the hypoxia inducible factor (HIF) is switched on and promotes adaptation to hypoxia by up-regulating genes involved in angiogenesis, erythropoiesis and glycolysis. The regulation of HIF is tightly modulated through intricate regulatory mechanisms. Notably, its protein stability is controlled by the oxygen sensing prolyl hydroxylase domain (PHD) enzymes and its transcriptional activity is controlled by the asparaginyl hydroxylase FIH (factor inhibiting HIF-1).To probe the complexity of hypoxia-induced HIF signalling, efforts in mathematical modelling of the pathway have been underway for around a decade. In this paper, we review the existing mathematical models developed to describe and explain specific behaviours of the HIF pathway and how they have contributed new insights into our understanding of the network. Topics for modelling included the switch-like response to decreased oxygen gradient, the role of micro environmental factors, the regulation by FIH and the temporal dynamics of the HIF response. We will also discuss the technical aspects, extent and limitations of these models. Recently, HIF pathway has been implicated in other disease contexts such as hypoxic inflammation and cancer through crosstalking with pathways like NF?B and mTOR. We will examine how future mathematical modelling and simulation of interlinked networks can aid in understanding HIF behaviour in complex pathophysiological situations. Ultimately this would allow the identification of new pharmacological targets in different disease settings.
Resumo:
The mammalian retromer is a multimeric protein complex involved in mediating endosome-to-trans-Golgi-network retrograde transport of the cation-independent mannose-6-phosphate receptor. The retromer is composed of two subcomplexes, one containing SNX1 and forming a membrane-bound coat, the other comprising VPS26, VPS29 and VPS35 and being cargo-selective. In yeast, an additional sorting nexin--Vps17p--is a component of the membrane bound coat. It remains unclear whether the mammalian retromer requires a functional equivalent of Vps17p. Here, we have used an RNAi loss-of-function screen to examine whether any of the other 30 mammalian sorting nexins are required for retromer-mediated endosome-to-trans-Golgi-network retrieval of the cation-independent mannose-6-phosphate receptor. Using this screen, we identified two proteins, SNX5 and SNX6, that, when suppressed, induced a phenotype similar to that observed upon suppression of known retromer components. Whereas SNX5 and SNX6 colocalised with SNX1 on early endosomes, in immunoprecipitation experiments only SNX6 appeared to exist in a complex with SNX1. Interestingly, suppression of SNX5 and/or SNX6 resulted in a significant loss of SNX1, an effect that seemed to result from post-translational regulation of the SNX1 level. Such data suggest that SNX1 and SNX6 exist in a stable, endosomally associated complex that is required for retromer-mediated retrieval of the cation-independent mannose-6-phosphate receptor. SNX5 and SNX6 may therefore constitute functional equivalents of Vps17p in mammals.
Learning and change in interorganizational networks:the case for network learning and network change
Resumo:
The ALBA 2002 Call for Papers asks the question ‘How do organizational learning and knowledge management contribute to organizational innovation and change?’. Intuitively, we would argue, the answer should be relatively straightforward as links between learning and change, and knowledge management and innovation, have long been commonly assumed to exist. On the basis of this assumption, theories of learning tend to focus ‘within organizations’, and assume a transfer of learning from individual to organization which in turn leads to change. However, empirically, we find these links are more difficult to articulate. Organizations exist in complex embedded economic, political, social and institutional systems, hence organizational change (or innovation) may be influenced by learning in this wider context. Based on our research in this wider interorganizational setting, we first make the case for the notion of network learning that we then explore to develop our appreciation of change in interorganizational networks, and how it may be facilitated. The paper begins with a brief review of lite rature on learning in the organizational and interorganizational context which locates our stance on organizational learning versus the learning organization, and social, distributed versus technical, centred views of organizational learning and knowledge. Developing from the view that organizational learning is “a normal, if problematic, process in every organization” (Easterby-Smith, 1997: 1109), we introduce the notion of network learning: learning by a group of organizations as a group. We argue this is also a normal, if problematic, process in organizational relationships (as distinct from interorganizational learning), which has particular implications for network change. Part two of the paper develops our analysis, drawing on empirical data from two studies of learning. The first study addresses the issue of learning to collaborate between industrial customers and suppliers, leading to the case for network learning. The second, larger scale study goes on to develop this theme, examining learning around several major change issues in a healthcare service provider network. The learning processes and outcomes around the introduction of a particularly controversial and expensive technology are described, providing a rich and contrasting case with the first study. In part three, we then discuss the implications of this work for change, and for facilitating change. Conclusions from the first study identify potential interventions designed to facilitate individual and organizational learning within the customer organization to develop individual and organizational ‘capacity to collaborate’. Translated to the network example, we observe that network change entails learning at all levels – network, organization, group and individual. However, presenting findings in terms of interventions is less meaningful in an interorganizational network setting given: the differences in authority structures; the less formalised nature of the network setting; and the importance of evaluating performance at the network rather than organizational level. Academics challenge both the idea of managing change and of managing networks. Nevertheless practitioners are faced with the issue of understanding and in fluencing change in the network setting. Thus we conclude that a network learning perspective is an important development in our understanding of organizational learning, capability and change, locating this in the wider context in which organizations are embedded. This in turn helps to develop our appreciation of facilitating change in interorganizational networks, both in terms of change issues (such as introducing a new technology), and change orientation and capability.
Resumo:
This paper models how the structure and function of a network of firms affects their aggregate innovativeness. Each firm has the potential to innovate, either from in-house R&D or from innovation spillovers from neighboring firms. The nature of innovation spillovers depends upon network density, the commonality of knowledge between firms, and the learning capability of firms. Innovation spillovers are modelled in detail using ideas from organizational theory. Two main results emerge: (i) the marginal effect on innovativeness of spillover intensity is non-monotonic, and (ii) network density can affect innovativeness but only when there are heterogeneous firms.
Resumo:
Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.
Resumo:
We propose an arithmetic of function intervals as a basis for convenient rigorous numerical computation. Function intervals can be used as mathematical objects in their own right or as enclosures of functions over the reals. We present two areas of application of function interval arithmetic and associated software that implements the arithmetic: (1) Validated ordinary differential equation solving using the AERN library and within the Acumen hybrid system modeling tool. (2) Numerical theorem proving using the PolyPaver prover. © 2014 Springer-Verlag.
Resumo:
In this paper, multiplexed sensor network capable of monitoring the shape changes of the torso for respiratory function monitoring is developed. As a demonstration, LPGs written into refractive index insensitive, progressive three layered fibre are embedded into supporting material is then placed on a resuscitation training manikin simulating respiration. A derivative spectroscopy interrogation technique is implemented and the bend sensitivity of the LPGs is used to reconstruct the shape of the manikin's torso. © 2003 IEEE.
Resumo:
Epilepsy is one of the most common neurological disorders, a large fraction of which is resistant to pharmacotherapy. In this light, understanding the mechanisms of epilepsy and its intractable forms in particular could create new targets for pharmacotherapeutic intervention. The current project explores the dynamic changes in neuronal network function in the chronic temporal lobe epilepsy (TLE) in rat and human brain in vitro. I focused on the process of establishment of epilepsy (epileptogenesis) in the temporal lobe. Rhythmic behaviour of the hippocampal neuronal networks in healthy animals was explored using spontaneous oscillations in the gamma frequency band (SγO). The use of an improved brain slice preparation technique resulted in the natural occurence (in the absence of pharmacological stimulation) of rhythmic activity, which was then pharmacologically characterised and compared to other models of gamma oscillations (KA- and CCh-induced oscillations) using local field potential recording technique. The results showed that SγO differed from pharmacologically driven models, suggesting higher physiological relevance of SγO. Network activity was also explored in the medial entorhinal cortex (mEC), where spontaneous slow wave oscillations (SWO) were detected. To investigate the course of chronic TLE establishment, a refined Li-pilocarpine-based model of epilepsy (RISE) was developed. The model significantly reduced animal mortality and demonstrated reduced intensity, yet high morbidy with almost 70% mean success rate of developing spontaneous recurrent seizures. We used SγO to characterize changes in the hippocampal neuronal networks throughout the epileptogenesis. The results showed that the network remained largely intact, demonstrating the subtle nature of the RISE model. Despite this, a reduction in network activity was detected during the so-called latent (no seizure) period, which was hypothesized to occur due to network fragmentation and an abnormal function of kainate receptors (KAr). We therefore explored the function of KAr by challenging SγO with kainic acid (KA). The results demonstrated a remarkable decrease in KAr response during the latent period, suggesting KAr dysfunction or altered expression, which will be further investigated using a variety of electrophysiological and immunocytochemical methods. The entorhinal cortex, together with the hippocampus, is known to play an important role in the TLE. Considering this, we investigated neuronal network function of the mEC during epileptogenesis using SWO. The results demonstrated a striking difference in AMPAr function, with possible receptor upregulation or abnormal composition in the early development of epilepsy. Alterations in receptor function inevitably lead to changes in the network function, which may play an important role in the development of epilepsy. Preliminary investigations were made using slices of human brain tissue taken following surgery for intratctable epilepsy. Initial results showed that oscillogenesis could be induced in human brain slices and that such network activity was pharmacologically similar to that observed in rodent brain. Overall, our findings suggest that excitatory glutamatergic transmission is heavily involved in the process of epileptogenesis. Together with other types of receptors, KAr and AMPAr contribute to epilepsy establishment and may be the key to uncovering its mechanism.
Resumo:
We consider a model of overall telecommunication network with virtual circuits switching, in stationary state, with Poisson input flow, repeated calls, limited number of homogeneous terminals and 8 types of losses. One of the main problems of network dimensioning/redimensioning is estimation of traffic offered in network because it reflects on finding of necessary number of circuit switching lines on the basis of the consideration of detailed users manners and target Quality of Service (QoS). In this paper we investigate the behaviour of the traffic offered in a network regarding QoS variables: “probability of blocked switching” and “probability of finding B-terminals busy”. Numerical dependencies are shown graphically. A network dimensioning task (NDT) is formulated, solvability of the NDT and the necessary conditions for analytical solution are researched as well. International Journal "Information Technologies and Knowledge" Vol.2 / 2008 174 The received results make the network dimensioning/redimensioning, based on QoS requirements easily, due to clearer understanding of important variables behaviour. The described approach is applicable directly for every (virtual) circuit switching telecommunication system e.g. GSM, PSTN, ISDN and BISDN. For packet - switching networks, at various layers, proposed approach may be used as a comparison basis and when they work in circuit switching mode (e.g. VoIP).
Resumo:
General Regression Neuro-Fuzzy Network, which combines the properties of conventional General Regression Neural Network and Adaptive Network-based Fuzzy Inference System is proposed in this work. This network relates to so-called “memory-based networks”, which is adjusted by one-pass learning algorithm.
Resumo:
The aim of this paper is to be determined the network capacity (number of necessary internal switching lines) based on detailed users’ behaviour and demanded quality of service parameters in an overall telecommunication system. We consider detailed conceptual and its corresponded analytical traffic model of telecommunication system with (virtual) circuit switching, in stationary state with generalized input flow, repeated calls, limited number of homogeneous terminals and losses due to abandoned and interrupted dialing, blocked and interrupted switching, not available intent terminal, blocked and abandoned ringing (absent called user) and abandoned conversation. We propose an analytical - numerical solution for finding the number of internal switching lines and values of the some basic traffic parameters as a function of telecommunication system state. These parameters are requisite for maintenance demand level of network quality of service (QoS). Dependencies, based on the numericalanalytical results are shown graphically. For proposed conceptual and its corresponding analytical model a network dimensioning task (NDT) is formulated, solvability of the NDT and the necessary conditions for analytical solution are researched as well. It is proposed a rule (algorithm) and computer program for calculation of the corresponded number of the internal switching lines, as well as corresponded values of traffic parameters, making the management of QoS easily.
Resumo:
In the present paper the problems of the optimal control of systems when constraints are imposed on the control is considered. The optimality conditions are given in the form of Pontryagin’s maximum principle. The obtained piecewise linear function is approximated by using feedforward neural network. A numerical example is given.