980 resultados para Autonomous underwater vehicle
Resumo:
This paper presents the validation of a manoeuvring model for a novel 127m-vehicle-passenger trimaran via full scale trials. The adopted structure of the model is based on a model previously proposed in the literature with some simplifications. The structure of the model is discussed. Then initial parameter estimates are computed, and the final set of parameters are obtained via adjustments based on engineering judgement and application of a genetic algorithm so as to match the data of the trials. The validity of the model is also assessed with data from a trial different from the one use for the parameter adjustment. The model shows good agreement with the trial data.
Resumo:
Speed is recognised as a key contributor to crash likelihood and severity, and to road safety performance in general. Its fundamental role has been recognised by making Safe Speeds one of the four pillars of the Safe System. In this context, impact speeds above which humans are likely to sustain fatal injuries have been accepted as a reference in many Safe System infrastructure policy and planning discussions. To date, there have been no proposed relationships for impact speeds above which humans are likely to sustain fatal or serious (severe) injury, a more relevant Safe System measure. A research project on Safe System intersection design required a critical review of published literature on the relationship between impact speed and probability of injury. This has led to a number of questions being raised about the origins, accuracy and appropriateness of the currently accepted impact speed–fatality probability relationships (Wramborg 2005) in many policy documents. The literature review identified alternative, more recent and more precise relationships derived from the US crash reconstruction databases (NASS/CDS). The paper proposes for discussion a set of alternative relationships between vehicle impact speed and probability of MAIS3+ (fatal and serious) injury for selected common crash types. Proposed Safe System critical impact speed values are also proposed for use in road infrastructure assessment. The paper presents the methodology and assumptions used in developing these relationships. It identifies further research needed to confirm and refine these relationships. Such relationships would form valuable inputs into future road safety policies in Australia and New Zealand.
Resumo:
This paper provides a comprehensive review of the vision-based See and Avoid problem for unmanned aircraft. The unique problem environment and associated constraints are detailed, followed by an in-depth analysis of visual sensing limitations. In light of such detection and estimation constraints, relevant human, aircraft and robot collision avoidance concepts are then compared from a decision and control perspective. Remarks on system evaluation and certification are also included to provide a holistic review approach. The intention of this work is to clarify common misconceptions, realistically bound feasible design expectations and offer new research directions. It is hoped that this paper will help us to unify design efforts across the aerospace and robotics communities.
Resumo:
Reflection and transmission coefficients of rubberized coir pads over the frequency band 200 kHz to 4 MHz are presented in this Paper. These results are compared with those reported for neoprene, paraffin wax, rubber car mat and plastic door mat1. The rubberized coir pads were found to possess wideband absorption characteristics. It has been experimentally found that 0.05 m thick coir pads have almost 100% absorption in the frequency range 800 kHz-3 MHz with a maximum at 2.35 MHz. We have used this material for lining the water tank for underwater acoustic studies.
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behaviour change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, this research seeks to use human factors related theories and practices to inform the design and evaluation of an in-vehicle Human Machine Interface (HMI) providing real-time driver feedback with the aim of improving both fuel efficiency and safety.
Resumo:
In 1999, the Department of Employment, Economic Development and Innovation (DEEDI), Fisheries Queensland undertook a new initiative to collect long term monitoring data of various important stocks including reef fish. This data and monitoring manual for the reef fish component of that program which was based on Underwater Visual Census methodology of 24 reefs on the Great Barrier Reef between 1999 and 2004. Data was collected using six 50m x 5m transects at 4 sites on 24 reefs. Benthic cover type was also recorded for 10m of each transect. The attached Access Database contains 5 tables being: SITE DETAILS TABLE Survey year Data entry complete REF survey site ID Site # (1-4) Location (reef name) Site Date (date surveyed) Observer 1 (3 initials to identify who estimated fish lengths and recorded benthic cover) TRANSECT DETAILS Survey ID Transect Number (1-6) Time (the transect was surveyed) Visibility (in metres) Minimum Depth surveyed (m) Maximum Depth surveyed (m) Percent of survey completed (%) Comments SUBSTRATE Survey ID Transect Number (1-6) then % cover of each of eth following categories of benthic cover types Dead Coral Live Coral Soft Coral Rubble Sand Sponge Algae Sea Grass Other COORDINATES (over survey sites) from -14 38.792 to -19 44.233 and from 145 21.507 to 149 55.515 SIGHTINGS ID Survey ID Transect Number (1-6) CAAB Code Scientific Name Reef Fish Length (estimated Fork Length of fish; -1 = unknown or not recorded) Outside Transect (if a fish was observed outside a transect -1 was recorded) Morph Code (F = footballer morph for Plectropomus laevis, S = Spawning colour morph displayed)
Resumo:
There is an increased interest on the use of Unmanned Aerial Vehicles (UAVs) for wildlife and feral animal monitoring around the world. This paper describes a novel system which uses a predictive dynamic application that places the UAV ahead of a user, with a low cost thermal camera, a small onboard computer that identifies heat signatures of a target animal from a predetermined altitude and transmits that target’s GPS coordinates. A map is generated and various data sets and graphs are displayed using a GUI designed for easy use. The paper describes the hardware and software architecture and the probabilistic model for downward facing camera for the detection of an animal. Behavioral dynamics of target movement for the design of a Kalman filter and Markov model based prediction algorithm are used to place the UAV ahead of the user. Geometrical concepts and Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of the user, thus delivering a new way point for autonomous navigation. Results show that the system is capable of autonomously locating animals from a predetermined height and generate a map showing the location of the animals ahead of the user.
Resumo:
The current state of the practice in Blackspot Identification (BSI) utilizes safety performance functions based on total crash counts to identify transport system sites with potentially high crash risk. This paper postulates that total crash count variation over a transport network is a result of multiple distinct crash generating processes including geometric characteristics of the road, spatial features of the surrounding environment, and driver behaviour factors. However, these multiple sources are ignored in current modelling methodologies in both trying to explain or predict crash frequencies across sites. Instead, current practice employs models that imply that a single underlying crash generating process exists. The model mis-specification may lead to correlating crashes with the incorrect sources of contributing factors (e.g. concluding a crash is predominately caused by a geometric feature when it is a behavioural issue), which may ultimately lead to inefficient use of public funds and misidentification of true blackspots. This study aims to propose a latent class model consistent with a multiple crash process theory, and to investigate the influence this model has on correctly identifying crash blackspots. We first present the theoretical and corresponding methodological approach in which a Bayesian Latent Class (BLC) model is estimated assuming that crashes arise from two distinct risk generating processes including engineering and unobserved spatial factors. The Bayesian model is used to incorporate prior information about the contribution of each underlying process to the total crash count. The methodology is applied to the state-controlled roads in Queensland, Australia and the results are compared to an Empirical Bayesian Negative Binomial (EB-NB) model. A comparison of goodness of fit measures illustrates significantly improved performance of the proposed model compared to the NB model. The detection of blackspots was also improved when compared to the EB-NB model. In addition, modelling crashes as the result of two fundamentally separate underlying processes reveals more detailed information about unobserved crash causes.
Resumo:
Territoriality is a central issue in indigenous peoples struggles. The territorial struggles involve struggles over the control of natural resources and over political participation and representation, but also over the perception of territorial rights and the symbolic representation of the territory. These struggles are carried through both in material and symbolic ways through recurring to different discourses and representations that provide legitimation for the territorial claims of the group. The study is located in the Northern Autonomous Atlantic Region of Nicaragua. The study concerns the territorial strategies, conceptions and practices of the indigenous people and other actors. Territorial conflicts exist between the autonomous region and the central government of Nicaragua, between mestizo settlers and indigenous people, between different indigenous groups, and between these and development agents such as conservation projects. The study focuses on how territorial discourses and representations are used to legitimate territorial control. Environmental, historical and cartographical discourses are the most important discourses recurred to. The influence of discourses and representations on the territorial practices and policies of the different actors, the links between the local struggles and global processes, and the broader structural factors impacting on the territorial struggles are also analysed. Among the structural factors are the problems related to land tenure and management and the use of natural resources, the advance of the agricultural frontier, the institutional weaknesses of the central and regional governments and the legislative processes. The territorial discourses are both recurred to in a strategic way and also grounded in local ideals and practices. The discourses have produced real effects for example in legislation, land tenure systems, political representation and environmental practices. Although the use of discourses and representations are an important power tool in territorial struggles, territorial control cannot be effectively accomplished merely through representing territorial claims in a legitimate way or through reforming legislation, as the conflicts are also largely a result of structural factors affecting the region. The fieldwork was carried out during a total of twelve months between 2000 and 2002. The research methods used were semi-structured interviews, participant observation and participatory research methods. A broad range of literary sources were also used to collect data. The study is located within the field of critical political geography with a discursive political ecology approach. It can be called a critical realist approach to the discursive analysis of indigenous territoriality.
Resumo:
This paper presents a Dubins model based strategy to determine the optimal path of a Miniature Air Vehicle (MAV), constrained by a bounded turning rate, that would enable it to fly along a given straight line, starting from an arbitrary initial position and orientation. The method is then extended to meet the same objective in the presence of wind which has a magnitude comparable to the speed of the MAV. We use a modification of the Dubins' path method to obtain the complete optimal solution to this problem in all its generality.
Resumo:
This paper extends the iterative linear matrix inequality algorithm (ILMI) for systems having non-ideal PI, PD and PID implementations. The new algorithm uses the practical implementation of the feedback blocksto form the equivalent static output feedback plant. The LMI based synthesis techniques are used in the algorithm to design a multi-loop, multi-objective fixed structure control. The benefits of such a control design technique are brought out by applying it to the lateral stabilizing and tracking feedback control problem of a 30cm wingspan micro air vehicle.
Resumo:
An Autonomous Line Scanning Unit (ALSU) for completely autonomous detection of call originations in the SPC Telephone Switching System is described. Through its own memories, ALSU maintains an up-to-date record of subscribers' statuses, detects call originations, performs 'hit timing check' and informs the Switching System of the identity of calling subscribers. The ALSU needs minimum interaction with the Central Processor, resulting in increased call handling capacity
Resumo:
An optimal pitch steering programme of a solid-fuel satellite launch vehicle to maximize either (1) the injection velocity at a given altitude, or (2) the size of circular orbit, for a given payload is presented. The two-dimensional model includes the rotation of atmosphere with the Earth, the vehicle's lift and drag, variation of thrust with time and altitude, inverse-square gravitational field, and the specified initial vertical take-off. The inequality constraints on the aerodynamic load, control force, and turning rates are also imposed. Using the properties of the central force motion the terminal constraint conditions at coast apogee are transferred to the penultimate stage burnout. Such a transformation converts a time-free problem into a time-fixed one, reduces the number of terminal constraints, improves accuracy, besides demanding less computer memory and time. The adjoint equations are developed in a compact matrix form. The problem is solved on an IBM 360/44 computer using a steepest ascent algorithm. An illustrative analysis of a typical launch vehicle establishes the speed of convergence, and accuracy and applicability of the algorithm.
Resumo:
This paper highlights the Hybrid agent construction model being developed that allows the description and development of autonomous agents in SAGE (Scalable, fault Tolerant Agent Grooming Environment) - a second generation FIPA-Compliant Multi-Agent system. We aim to provide the programmer with a generic and well defined agent architecture enabling the development of sophisticated agents on SAGE, possessing the desired properties of autonomous agents - reactivity, pro-activity, social ability and knowledge based reasoning. © Springer-Verlag Berlin Heidelberg 2005.
Resumo:
A rough hydrophobic surface when immersed in water can result in a ``Cassie'' state of wetting in which the water is in contact with both the solid surface and the entrapped air. The sustainability of the entrapped air on such surfaces is important for underwater applications such as reduction of flow resistance in microchannels and drag reduction of submerged bodies such as hydrofoils. We utilize an optical technique based oil total internal reflection of light at the water-air interface to quantify the spatial distribution of trapped air oil such a surface and its variation with immersion time. With this technique, we evaluate the sustainability of the Cassie state on hydrophobic surfaces with four different kinds of textures. The textures studied are regular arrays of pillars, ridges, and holes that were created in silicon by a wet etching technique, and also a texture of random craters that was obtained through electrodischarge machining of aluminum. These surfaces were rendered hydrophobic with a self-assembled layer Of fluorooctyl trichlorosilane. Depending on the texture, the size and shape of the trapped air pockets were found to vary. However, irrespective of the texture, both the size and the number of air pockets were found to decrease with time gradually and eventually disappear, suggesting that the sustainability of the ``Cassie'' state is finite for all the microstructures Studied. This is possibly due to diffusion of air from the trapped air pockets into the water. The time scale for disappearance of air pockets was found to depend on the kind of microstructure and the hydrostatic pressure at the water-air interface. For the surface with a regular array of pillars, the air pockets were found to be in the form of a thin layer perched on top of the pillars with a large lateral extent compared to the spacing between pillars. For other surfaces studied, the air pockets are smaller and are of the same order as the characteristic length scale of the texture. Measurements for the surface with holes indicate that the time for air-pocket disappearance reduces as the hydrostatic pressure is increased.