998 resultados para Astrophysics.
Resumo:
This paper reports variations of polycyclic aromatic hydrocarbons (PAHs) features that were found in Spitzer Space Telescope spectra of carbon-rich post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). The paper consists of two parts. The first part describes our Spitzer spectral observing programme of 24 stars including post-AGB candidates. The latter half of this paper presents the analysis of PAH features in 20 carbon-rich post-AGB stars in the LMC, assembled from the Spitzer archive as well as from our own programme.We found that five post-AGB stars showed a broad feature with a peak at 7.7 μm, that had not been classified before. Further, the 10-13 μm PAH spectra were classified into four classes, one of which has three broad peaks at 11.3, 12.3 and 13.3 μm rather than two distinct sharp peaks at 11.3 and 12.7 μm, as commonly found in HII regions. Our studies suggest that PAHs are gradually processed while the central stars evolve from post-AGB phase to planetary nebulae, changing their composition before PAHs are incorporated into the interstellar medium. Although some metallicity dependence of PAH spectra exists, the evolutionary state of an object is more significant than its metallicity in determining the spectral characteristics of PAHs for LMC and Galactic post-AGB stars. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
An analysis of ≃19 500 narrow (≲200 km s-1) CIV λλ1548.2,1550.8 absorbers in ≃34 000 Sloan Digital Sky Survey quasar spectra is presented. The statistics of the number of absorbers as a function of outflow velocity shows that in approximately two-thirds of outflows, with multiple C IV absorbers present, absorbers are line-locked at the 500 km s-1 velocity separation of the C IV absorber doublet; appearing as 'triplets' in the quasar spectra. Line-locking is an observational signature of radiative line-driving in outflowing material, where the successive shielding of 'clouds' of material in the outflow locks the clouds together in outflow velocity. Line-locked absorbers are seen in both broad absorption line (BAL) quasars and non-BAL quasars with comparable frequencies and with velocities out to at least 20 000 km s-1. There are no detectable differences in the absorber properties and the dust content of single C IV doublets and line-locked C IV doublets. The gas associated with both single and line-locked CIV absorption systems includes material with a wide range of ionization potential (14-138 eV). Both single and line-locked CIV absorber systems show strong systematic trends in their ionization as a function of outflow velocity, with ionization decreasing rapidly with increasing outflow velocity. Initial simulations, employing CLOUDY, demonstrate that a rich spectrum of line-locked signals at various velocities may be expected due to significant opacities from resonance lines of Li-, He- and H-like ions of O, C and N, along with contributions from He II and HI resonance lines. The simulations confirm that line-driving can be the dominant acceleration mechanism for clouds with N(H I) ≃ 1019 cm-2.
Resumo:
Aims. We seek to understand the morphology of the chromosphere in sunspot umbra. We investigate if the horizontal structures observed in the spectral core of the Ca ii H line are ephemeral visuals caused by the shock dynamics of more stable structures, and examine their relationship with observables in the H-alpha line. Methods. Filtergrams in the core of the Ca ii H and H-alpha lines as observed with the Swedish 1-m Solar Telescope are employed. We utilise a technique that creates composite images and tracks the flash propagation horizontally. Results. We find 0. 15 wide horizontal structures, in all of the three target sunspots, for every flash where the seeing is moderate to good. Discrete dark structures are identified that are stable for at least two umbral flashes, as well as systems of structures that live for up to 24 min. We find cases of extremely extended structures with similar stability, with one such structure showing an extent of 5. Some of these structures have a correspondence in H-alpha, but we were unable to find a one-to-one correspondence for every occurrence. If the dark streaks are formed at the same heights as umbral flashes, there are systems of structures with strong departures from the vertical for all three analysed sunspots. Conclusions. Long-lived Ca ii H filamentary horizontal structures are a common and likely ever-present feature in the umbra of sunspots. If the magnetic field in the chromosphere of the umbra
Resumo:
Aims: In this paper we aim to investigate the evolution of plasmaproperties and Stokes parameters in photospheric magnetic bright pointsusing 3D magneto-hydrodynamical simulations and radiative diagnostics ofsolar granulation.
Methods: Simulated time-dependent radiationparameters and plasma properties were investigated throughout theevolution of a bright point. Synthetic Stokes profiles for the FeI630.25 nm line were calculated, which also allowed the evolution of theStokes-I line strength and Stokes-V area and amplitude asymmetries to beinvestigated.
Results: Our results are consistent withtheoretical predictions and published observations describing convectivecollapse, and confirm this as the bright point formation process.Through degradation of the simulated data to match the spatialresolution of SOT, we show that high spatial resolution is crucial forthe detection of changing spectro-polarimetric signatures throughout amagnetic bright point's lifetime. We also show that the signaturedownflow associated with the convective collapse process tends towardszero as the radiation intensity in the bright point peaks, because ofthe magnetic forces present restricting the flow of material in the fluxtube.
Resumo:
Ellerman Bombs (EBs) are thought to arise as a result of photospheric magnetic reconnection. We use data from the Swedish 1-m Solar Telescope(SST), to study EB events on the solar disk and at the limb. Both datasets show that EBs are connected to the foot-points of forming chromospheric jets. The limb observations show that a bright structure in the H$\alpha$ blue wing connects to the EB initially fuelling it,leading to the ejection of material upwards. The material moves along a loop structure where a newly formed jet is subsequently observed in the red wing of H$\alpha$. In the disk dataset, an EB initiates a jet which propagates away from the apparent reconnection site within the EB flame.The EB then splits into two, with associated brightenings in the inter-granular lanes (IGLs). Micro-jets are then observed, extending to500 km with a lifetime of a few minutes. Observed velocities of themicro-jets are approximately 5-10 km s$^{-1}$, while their chromospheric counterparts range from 50-80 km s$^{-1}$. MURaM simulations of quiet Sun reconnection show that micro-jets with similar properties to that of the observations follow the line of reconnection in the photosphere,with associated H$\alpha$ brightening at the location of increased temperature.
Resumo:
We have developed a model to predict the post-collision brightness increase of sub-catastrophic collisions between asteroids and to evaluate the likelihood of a survey detecting these events. It is based on the cratering scaling laws of Holsapple and Housen (2007) and models the ejecta expansion following an impact as occurring in discrete shells each with their own velocity. We estimate the magnitude change between a series of target/impactor pairs, as- suming it is given by the increase in reflecting surface area within a photometric aperture due to the resulting ejecta. As expected the photometric signal increases with impactor size, but we find also that the photometric signature decreases rapidly as the target aster- oid diameter increases, due to gravitational fallback. We have used the model results to make an estimate of the impactor diameter for the (596) Scheila collision of D = 49 − 65m depending on the impactor taxonomy, which is broadly consistent with previous estimates. We varied both the strength regime (highly porous and sand/cohesive soil) and the tax- onomic type (S-, C- and D-type) to examine the effect on the magnitude change, finding that it is significant at early stages but has only a small effect on the overall lifetime of the photometric signal. Combining the results of this model with the collision frequency estimates of Bottke et al. (2005), we find that low-cadence surveys of ∼one visit per luna- tion will be insensitive to impacts on asteroids with D < 20km if relying on photometric detections.
Resumo:
Context: Near-Earth asteroid-comet transition object 107P/ (4015) Wilson-Harrington is a possible target of the joint European Space Agency (ESA) and Japanese Aerospace Exploration Agency (JAXA) Marco Polo sample return mission. Physical studies of this object are relevant to this mission, and also to understanding its asteroidal or cometary nature. Aims: Our aim is to obtain significant new constraints on the surface thermal properties of this object. Methods: We present mid-infrared photometry in two filters (16 and 22 μm) obtained with NASA's Spitzer Space Telescope on February 12, 2007, and results from the application of the Near Earth Asteroid Thermal Model (NEATM). We obtained high S/N in two mid-IR bands allowing accurate measurements of its thermal emission. Results: We obtain a well constrained beaming parameter (η = 1.39±0.26) and obtain a diameter and geometric albedo of D = 3.46±0.32 km, and pV = 0.059±0.011. We also obtain similar results when we apply this best-fitting thermal model to single-band mid-IR photometry reported by Campins et al. (1995, P&SS, 43, 733), Kraemer et al. (2005, AJ, 130, 2363) and Reach et al. (2007, Icarus, 191, 298). Conclusions: The albedo of 4015 Wilson-Harrington is low, consistent with those of comet nuclei and primitive C-, P-, D-type asteorids. We establish a rough lower limit for the thermal inertia of W-H of 60 Jm-2s-0.5 K-1 when it is at r = 1 AU, which is slightly over the limit of 30 Jm-2 s-0.5 K-1 derived by Groussin et al. (2009, Icarus, 199, 568) for the thermal inertia of the nucleus of comet 22P/Kopff.
Resumo:
Theoretical resonance fluorescence calculations are presented of the triatomic C3 radical and are compared with observations of the C3 emission in comets Hale-Bopp and de Vico. A theoretical model of the C3 vibration-rotational structure in the A1Piu - X1Sigmag + electronic system is introduced. The model takes into account the detailed structure of the bending mode nu2 which is responsible for the emission of the 4050 Å group. A total of 1959 levels are considered, with 515 levels in the ground state. The main effort is to model high-resolution spectra of the 4050 Å emission in comets C/1995 O1 Hale-Bopp and 122P/1995 S1 de Vico. The agreement between observed and theoretical spectra is good for a value of the dipole moment derivative of dmu/dr ~ 2.5 Debye Å-1. The modeled C3 emission exhibits a pronounced Swings effect. Based on observations made with William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and on observations made at the McDonald Observatory, which is operated by the University of Texas at Austin, USA.
Resumo:
ABSTRACT BODY: To resolve outstanding questions on heating of coronal loops, we study intensity fluctuations in inter-moss portions of active region core loops as observed with AIA/SDO. The 94Å fluctuations (Figure 1) have structure on timescales shorter than radiative and conductive cooling times. Each of several strong 94Å brightenings is followed after ~8 min by a broader peak in the cooler 335Å emission. This indicates that we see emission from the hot component of the 94Å contribution function. No hotter contributions appear, and we conclude that the 94Å intensity can be used as a proxy for energy injection into the loop plasma. The probability density function of the observed 94Å intensity has 'heavy tails' that approach zero more slowly than the tails of a normal distribution. Hence, large fluctuations dominate the behavior of the system. The resulting 'intermittence' is associated with power-law or exponential scaling of the related variables, and these in turn are associated with turbulent phenomena. The intensity plots in Figure 1 resemble multifractal time series, which are common to various forms of turbulent energy dissipation. In these systems a single fractal dimension is insufficient to describe the dynamics and instead there is a spectrum of fractal dimensions that quantify the self-similar properties. Figure 2 shows the multifractal spectrum from our data to be invariant over timescales from 24 s to 6.4 min. We compare these results to outputs from theoretical energy dissipation models based on MHD turbulence, and in some cases we find substantial agreement, in terms of intermittence, multifractality and scale invariance. Figure 1. Time traces of 94A intensity in the inter-moss portions of four AR core loops. Figure 2. Multifractal spectra showing timescale invariance. The four cases of Figure 1 are included.
Resumo:
Evidence has accumulated of high temperature (> 4 MK) coronal emission in active region cores that corresponds to structures in equilibrium. Other studies have found evidence of evolving loops. We investigate the EUV intensity and temperature variations of short coronal loops observed in the core of NOAA Active Region 11250 on 13 July 2011. The loops, which run directly between the AR opposite polarities, are first detectable in the 94Å band of Fe XVIII, implying an effective temperature ~ 7 MK. The low temperature component of the 94 Å signal is modeled in terms of a linear superposition of the 193 Å and 171 Å signals in order to separate the hot component. After identifying the loops we have used contemporaneous HMI observations to identify the corresponding inter-moss regions, and we have investigated their time evolution in six AIA EUV channels. The results can be separated into two classes. Group 1 (94Å, 335Å, 211Å) is characterized by hotter temperatures (~2-7 MK), and Group 2 (193Å, 171Å, 131Å) by cooler temperatures (0.4 - 1.6 MK). For Group 1 the intensity peaks in the 94Å channel are followed by maxima in the 335 Å channel with a time lag of ~8 min, suggestive of a cooling pattern with an exponential decay. While the 211Å maxima follow those in the 335 Å channel, there is no systematic relation which would indicate a progressive cooling process through the lower temperatures, as has been observed in other investigations. In Group 2 the signals in the 171 and 131Å channels track each other closely, and lag behind the 193Å. In the inter-moss region of the loop the peak temperature and peak emission measure have opposite trends. The hot 94Å brightenings occur in the central part of the loops with maximum temperatures ~7 MK. Subsequently the loops appear to fill with plasma with an emission measure compatible with the 193 Å signal and temperature in the range ~ 1.5-2 MK. Although the exact details of the time evolution are still under investigation, these non static loops show high levels of intermittency in the 94Å signal (please see poster "Intermittent and Scale-Invariant Intensity Fluctuations in Hot Coronal Loops," by Lawrence et al. in this session).
Resumo:
We study properties of intensity fluctuations in NOAA Active Region 11250 observed on 13 July 2011 starting at UT 13:32. Included are data obtained in the EUV bands of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO/AIA) as well as nearly simultaneous observations of the chromosphere made, at much higher spatial and temporal resolution, with the Rapid Oscillations in the Solar Atmosphere (ROSA) and Hydrogen-Alpha Rapid Dynamics camera (HARDcam) systems at the Dunn Solar Telescope. A complex structure seen in both the ROSA/HARDcam and SDO data sets comprises a system of loops extending outward from near the boundary of the leading sunspot umbra. It is visible in the ROSA Ca II K and HARDcam Hα images, as well as the SDO 304 Å, 171 Å and 193 Å channels, and it thus couples the chromosphere, transition region and corona. In the ground-based images the loop structure is 4.1 Mm long. Some 17.5 Mm, can be traced in the SDO/AIA data. The chromospheric emissions observed by ROSA and HARDcam appear to occupy the inner, and apparently cooler and lower, quarter of the loop. We compare the intensity fluctuations of two points within the structure. From alignment with SDO/HMI images we identify a point "A" near the loop structure, which sits directly above a bipolar magnetic feature in the photosphere. Point "B" is characteristic of locations within the loops that are visible in both the ROSA/HARDcam and the SDO/AIA data. The intensity traces for point A are quiet during the first part of the data string. At time ~ 19 min they suddenly begin a series of impulsive brightenings. In the 171 Å and 193 Å coronal lines the brightenings are localized impulses in time, but in the transition region line at 304 Å they are more extended in time. The intensity traces in the 304 Å line for point B shows a quasi-periodic signal that changes properties at about 19 min. The wavelet power spectra are characterized by two periodicities. A 6.7 min period extends from the beginning of the series until about 25 minutes, and another signal with period ~3 min starts at about 20 min. The 193 Å power spectrum has a characteristic period of 5 min, before the 20 min transition and a 2.5 min periodicity afterward. In the case of HARDcam Hα data a localized 4 min periodicity can be found until about 7 min, followed by a quiet regime. After ~20 min a 2.3 min periodicity appears. Interestingly a coronal loop visible in the 94 Å line that is centrally located in the AR, running from the leading umbra to the following polarity, at about time 20 min undergoes a strong brightening beginning at the same moment all along 15 Mm of its length. The fact that these different signals all experience a clear-cut change at time about 20 min suggests an underlying organizing mechanism. Given that point A has a direct connection to the photospheric magnetic bipole, we conjecture that the whole extended structure is connected in a complex manner to the underlying magnetic field. The periodicities in these features may favor the wave nature rather than upflows and interpretations will be discussed.
Resumo:
Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas.
Aims. Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. The cloud size is comparable to that created in recent laboratory experiments and such clouds may exist close to internal and external shocks of leptonic jets. The purpose of our study is to determine the prevalent instabilities, their ability to generate electromagnetic fields and the mechanism, by which the lepton micro-cloud transfers energy to the background plasma.
Methods. A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The latter consists of electrons with a temperature of 1 keV and immobile ions. The initially charge- and current neutral micro-cloud has a temperature of 100 keV and a side length of 2.5 plasma skin depths of the micro-cloud. The side length is given in the reference frame of the background plasma. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times.
Results. A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts the peak magnetic field amplitude. The current density and the moduli of the electromagnetic fields grow aperiodically in time and steadily along the direction that is anti-parallel to the cloud's velocity vector. The micro-cloud remains conjoined during the simulation. The instability induces an electrostatic wakefield in the background plasma.
Conclusions. Relativistic clouds of leptons can generate and amplify magnetic fields even if they have a microscopic size, which implies that the underlying processes can be studied in the laboratory. The interaction of the localized magnetic field and high-energy leptons will give rise to synchrotron jitter radiation. The wakefield in the background plasma dissipates the kinetic energy of the lepton cloud. Even the fastest lepton micro-clouds can be slowed down by this collisionless mechanism. Moderately fast charge- and current neutralized lepton micro-clouds will deposit their energy close to relativistic shocks and hence they do not constitute an energy loss mechanism for the shock.
Resumo:
Aims
The aim of this paper is twofold: 1) to investigate the properties of extragalactic dust and compare them to what is seen in the Galaxy; 2) to address in an independent way the problem of the anomalous extinction curves reported for reddened Type Ia Supernovae (SN) in connection to the environments in which they explode.
Methods
The properties of the dust are derived from the wavelength dependence of the continuum polarization observed in four reddened Type Ia SN: 1986G, 2006X, 2008fp, and 2014J. The method is based on the observed fact that Type Ia SN have a negligible intrinsic continuum polarization. This and their large luminosity makes them ideal tools to probe the dust properties in extragalactic environments.
Results
All four objects are characterized by exceptionally low total-to-selective absorption ratios (R<inf>V</inf>) and display an anomalous interstellar polarization law, characterized by very blue polarization peaks. In all cases the polarization position angle is well aligned with the local spiral structure. While SN 1986G is compatible with the most extreme cases of interstellar polarization known in the Galaxy, SN 2006X, 2008fp, and 2014J show unprecedented behaviours. The observed deviations do not appear to be connected to selection effects related to the relatively large amounts of reddening characterizing the objects in the sample.
Conclusions
The dust responsible for the polarization of these four SN is most likely of interstellar nature. The polarization properties can be interpreted in terms of a significantly enhanced abundance of small grains. The anomalous behaviour is apparently associated with the properties of the galactic environment in which the SN explode, rather than with the progenitor system from which they originate. For the extreme case of SN 2014J, we cannot exclude the contribution of light scattered by local material; however, the observed polarization properties require an ad hoc geometrical dust distribution.
Resumo:
Aims: We aim to calculate the kinetic, magnetic, thermal, and total energy densities and the flux of energy in axisymmetric sausage modes. The resulting equations should contain as few parameters as possible to facilitate applicability for different observations.
Methods: The background equilibrium is a one-dimensional cylindrical flux tube model with a piecewise constant radial density profile. This enables us to use linearised magnetohydrodynamic equations to calculate the energy densities and the flux of energy for axisymmetric sausage modes.
Results: The equations used to calculate the energy densities and the flux of energy in axisymmetric sausage modes depend on the radius of the flux tube, the equilibrium sound and Alfvén speeds, the density of the plasma, the period and phase speed of the wave, and the radial or longitudinal components of the Lagrangian displacement at the flux tube boundary. Approximate relations for limiting cases of propagating slow and fast sausage modes are also obtained. We also obtained the dispersive first-order correction term to the phase speed for both the fundamental slow body mode under coronal conditions and the slow surface mode under photospheric conditions.
Resumo:
Within the last decade, due to significant improvements in the spatial and temporal resolution of chromospheric data, magneto hydrodynamic (MHD)wave studies in this fascinating region of the Sun's atmosphere have risen to the forefront of solar physics research. In this review we begin by reviewing the challenges and debates that have manifested in relation to MHD wave mode identification in fine-scale chromosphericmagnetic structures, including spicules, fibrils and mottles. Next we goon to discuss how the process of accurately identifying MHD wave modes also has a crucial role to play in estimating their wave energy flux.This is of cardinal importance for estimating what the possible contribution of MHD waves is to solar atmospheric heating. Finally, we detail how such advances in chromospheric MHD wave studies have also allowed us, for the first time, to implement cutting-edge magneto seismological techniques that provide new insight into the sub-resolution plasma structuring of the lower solar atmosphere.