967 resultados para Asthma, Transient Tachypnea of the Newborn (TTN), Wheezing Attack
Resumo:
The Escherichia coli transcription factor OxyR is activated by the formation of an intramolecular disulfide bond and subsequently is deactivated by enzymatic reduction of the disulfide bond. Here we show that OxyR can be activated by two possible pathways. In mutants defective in the cellular disulfide-reducing systems, OxyR is constitutively activated by a change in the thiol—disulfide redox status in the absence of added oxidants. In wild-type cells, OxyR is activated by hydrogen peroxide. By monitoring the presence of the OxyR disulfide bond after exposure to hydrogen peroxide in vivo and in vitro, we also show that the kinetics of OxyR oxidation by low concentrations of hydrogen peroxide is significantly faster than the kinetics of OxyR reduction, allowing for transient activation in an overall reducing environment. We propose that the activity of OxyR in vivo is determined by the balance between hydrogen peroxide levels and the cellular redox environment.
Resumo:
The prion diseases seem to be caused by a conformational change of the prion protein (PrP) from the benign cellular form PrPC to the infectious scrapie form PrPSc; thus, detailed information about PrP structure may provide essential insights into the mechanism by which these diseases develop. In this study, the secondary structure of the recombinant Syrian hamster PrP of residues 29–231 [PrP(29–231)] is investigated by multidimensional heteronuclear NMR. Chemical shift index analysis and nuclear Overhauser effect data show that PrP(29–231) contains three helices and possibly one short β-strand. Most striking is the random-coil nature of chemical shifts for residues 30–124 in the full-length PrP. Although the secondary structure elements are similar to those found in mouse PrP fragment PrP(121–231), the secondary structure boundaries of PrP(29–231) are different from those in mouse PrP(121–231) but similar to those found in the structure of Syrian hamster PrP(90–231). Comparison of resonance assignments of PrP(29–231) and PrP(90–231) indicates that there may be transient interactions between the additional residues and the structured core. Backbone dynamics studies done by using the heteronuclear [1H]-15N nuclear Overhauser effect indicate that almost half of PrP(29–231), residues 29–124, is highly flexible. This plastic region could feature in the conversion of PrPC to PrPSc by template-assisted formation of β-structure.
Resumo:
Two classes of human G protein-coupled receptors, cysteinyl leukotriene 1 (CysLT1) and CysLT2 receptors, recently have been characterized and cloned. Because the CysLT1 receptor blockers are effective in treating human bronchial asthma and the mouse is often used to model human diseases, we isolated the mouse CysLT1 receptor from a mouse lung cDNA library and found two isoforms. A short isoform cDNA containing two exons encodes a polypeptide of 339 aa with 87.3% amino acid identity to the human CysLT1 receptor. A long isoform has two additional exons and an in-frame upstream start codon resulting in a 13-aa extension at the N terminus. Northern blot analysis revealed that the mouse CysLT1 receptor mRNA is expressed in lung and skin; and reverse transcription–PCR showed wide expression of the long isoform with the strongest presence in lung and skin. The gene for the mouse CysLT1 receptor was mapped to band XD. Leukotriene (LT) D4 induced intracellular calcium mobilization in Chinese hamster ovary cells stably expressing either isoform of the mouse CysLT1 receptor cDNA. This agonist effect of LTD4 was fully inhibited by the CysLT1 receptor antagonist, MK-571. Microsomal membranes from each transformant showed a single class of binding sites for [3H]LTD4; and the binding was blocked by unlabeled LTs, with the rank order of affinities being LTD4 >> LTE4 = LTC4 >> LTB4. Thus, the dominant mouse isoform with the N-terminal amino acid extension encoded by an additional exon has the same ligand response profile as the spliced form and the human receptor.
Resumo:
D-raf, a Drosophila homolog of the raf proto-oncogene, has diverse functions throughout development and is transcribed in a wide range of tissues, with high levels of expression in the ovary and in association with rapid proliferation. The expression pattern resembles those of S phase genes, which are regulated by E2F transcription factors. In the 5′-flanking region of D-raf, four sequences (E2F sites 1–4) similar to the E2F recognition sequence were found, one of them (E2F site 3) being recognized efficiently by Drosophila E2F (dE2F) in vitro. Transient luciferase expression assays confirmed activation of the D-raf gene promoter by dE2F/dDP. Expression of Draf–lacZ was greatly reduced in embryos homozygous for the dE2F mutation. These results suggest that dE2F is likely to be an important regulator of D-raf transcription.
Resumo:
19F nuclear Overhauser effects (NOEs) between fluorine labels on the cytoplasmic domain of rhodopsin solubilized in detergent micelles are reported. Previously, high-resolution solution 19F NMR spectra of fluorine-labeled rhodopsin in detergent micelles were described, demonstrating the applicability of this technique to studies of tertiary structure in the cytoplasmic domain. To quantitate tertiary contacts we have applied a transient one-dimensional difference NOE solution 19F NMR experiment to this system, permitting assessment of proximities between fluorine labels specifically incorporated into different regions of the cytoplasmic face. Three dicysteine substitution mutants (Cys-140–Cys-316, Cys-65–Cys-316, and Cys-139–Cys-251) were labeled by attachment of the trifluoroethylthio group through a disulfide linkage. Each mutant rhodopsin was prepared (8–10 mg) in dodecylmaltoside and analyzed at 20°C by solution 19F NMR. Distinct chemical shifts were observed for all of the rhodopsin 19F labels in the dark. An up-field shift of the Cys-316 resonance in the Cys-65–Cys-316 mutant suggests a close proximity between the two residues. When analyzed for 19F-19F NOEs, a moderate negative enhancement was observed for the Cys-65–Cys-316 pair and a strong negative enhancement was observed for the Cys-139–Cys-251 pair, indicating proximity between these sites. No NOE enhancement was observed for the Cys-140–Cys-316 pair. These NOE effects demonstrate a solution 19F NMR method for analysis of tertiary contacts in high molecular weight proteins, including membrane proteins.
Resumo:
Rck2, a yeast Ser/Thr protein kinase homologous to mammalian calmodulin kinases, requires phosphorylation for activation. We provide evidence that in budding yeast, this step can be executed by the osmostress-activated mitogen-activated protein kinase Hog1. Rck2 phosphorylation was transiently increased during osmostress or in mutants with a hyperactive high osmolarity glycerol (HOG) pathway. This modification depended on catalytically active Hog1 kinase and two putative mitogen-activated protein kinase phosphorylation sites in Rck2. Immunokinase assays showed that Hog1 can directly phosphorylate Rck2 to stimulate its enzymatic activity toward translation elongation factor 2. We demonstrate that Hog1 and Rck2 are necessary for attenuation of protein synthesis in response to osmotic challenge and show that modification of elongation factor 2 induced by osmostress depends on Rck2 and Hog1 in vivo. Therefore, we propose that the transient down-regulation of protein synthesis after osmotic shock is a response not to damage but to an extracellular signal mediated by Hog1 and Rck2.
Resumo:
Tryptases, the predominant serine proteinases of human mast cells, have recently been implicated as mediators in the pathogenesis of allergic and inflammatory conditions, most notably asthma. Their distinguishing features, their activity as a heparin-stabilized tetramer and resistance to most proteinaceous inhibitors, are perfectly explained by the 3-Å crystal structure of human βII-tryptase in complex with 4-amidinophenylpyruvic acid. The tetramer consists of four quasiequivalent monomers arranged in a flat frame-like structure. The active centers are directed toward a central pore whose narrow openings of approximately 40 Å × 15 Å govern the interaction with macromolecular substrates and inhibitors. The tryptase monomer exhibits the overall fold of trypsin-like serine proteinases but differs considerably in the conformation of six surface loops arranged around the active site. These loops border and shape the active site cleft to a large extent and form all contacts with neighboring monomers via two distinct interfaces. The smaller of these interfaces, which is exclusively hydrophobic, can be stabilized by the binding of heparin chains to elongated patches of positively charged residues on adjacent monomers or, alternatively, by high salt concentrations in vitro. On tetramer dissociation, the monomers are likely to undergo transformation into a zymogen-like conformation that is favored and stabilized by intramonomer interactions. The structure thus provides an improved understanding of the unique properties of the biologically active tryptase tetramer in solution and will be an incentive for the rational design of mono- and multifunctional tryptase inhibitors.
Resumo:
Two important signaling systems involved in the growth and development of plants, those triggered by the photoreceptor phytochrome and the hormone abscisic acid (ABA), are involved in the regulation of expression of the NPR1 gene of Lemna gibba. We previously demonstrated that phytochrome action mediates changes in ABA levels in L. gibba, correlating with changes in gene expression evoked by stimulation of the phytochrome system. We have now further characterized phytochrome- and ABA-mediated regulation of L. gibba NPR1 gene expression using a transient particle bombardment assay, demonstrating that regulatory elements controlling responses to both stimuli reside within 156 nucleotides upstream of the transcription start. Linker scan (LS) analysis of the region from −156 to −70 was used to identify two specific requisite and nonredundant cis-acting promoter elements between −143 to −135 (LS2) and −113 to −101 (LS5). Mutation of either of these elements resulted in a coordinate loss of regulation by phytochrome and ABA. This suggests that, unlike the L. gibba Lhcb2*1 promoter, in which phytochrome and ABA regulatory elements are separable, the phytochrome response of the L. gibba NPR1 gene can be attributed to alterations in ABA levels.
Resumo:
Whereas adult sex differences in brain morphology and behavior result from developmental exposure to steroid hormones, the mechanism by which steroids differentiate the brain is unknown. Studies to date have described subtle sex differences in levels of proteins and neurotransmitters during brain development, but these have lacked explanatory power for the profound sex differences induced by steroids. We report here a major divergence in the response to injection of the γ-aminobutyric acid type A (GABAA) agonist, muscimol, in newborn male and female rats. In females, muscimol treatment primarily decreased the phosphorylation of cAMP response element binding protein (CREB) within the hypothalamus and the CA1 region of the hippocampus. In contrast, muscimol increased the phosphorylation of CREB in males within these same brain regions. Within the arcuate nucleus, muscimol treatment increased the phosphorylation of CREB in both females and males. Thus, the response to GABA can be excitatory or inhibitory on signal-transduction pathways that alter CREB phosphorylation depending on the sex and the region in developing brain. This divergence in response to GABA allows for a previously unknown form of steroid-mediated neuronal plasticity and may be an initial step in establishing sexually dimorphic signal-transduction pathways in developing brain.
Resumo:
To investigate the molecular mechanism for stereospecific binding of agonists to beta 2-adrenergic receptors we used receptor models to identify potential binding sites for the beta-OH-group of the ligand, which defines the chiral center. Ser-165, located in transmembrane helix IV, and Asn-293, situated in the upper half of transmembrane helix VI, were identified as potential binding sites. Mutation of Ser-165 to Ala did not change the binding of either isoproterenol isomer as revealed after transient expression in human embryonic kidney (HEK)-293 cells. In contrast, a receptor mutant in which Asn-293 was replaced by Leu showed substantial loss of stereospecific isoproterenol binding. Adenylyl cyclase stimulation by this mutant after stable expression in CHO cells confirmed the substantial loss of stereospecificity for isoproterenol. In a series of agonists the loss of affinity in the Leu-293 mutant receptor was strongly correlated with the intrinsic activity of the compounds. Full agonists showed a 10-30-fold affinity loss, whereas partial agonists had almost the same affinity for both receptors. Stereospecific recognition of antagonists was unaltered in the Leu-293 mutant receptor. These data indicate a relationship between stereospecificity and intrinsic activity of agonists and suggest that Asn-293 is important for both properties of the agonist-receptor interaction.
Resumo:
The Ah receptor (AHR) is a ligand-activated transcription factor that mediates a pleiotropic response to environmental contaminants such as benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. In an effort to gain insight into the physiological role of the AHR and to develop models useful in risk assessment, gene targeting was used to inactivate the murine Ahr gene by homologous recombination. Ahr-/- mice are viable and fertile but show a spectrum of hepatic defects that indicate a role for the AHR in normal liver growth and development. The Ahr-/- phenotype is most severe between 0-3 weeks of age and involves slowed early growth and hepatic defects, including reduced liver weight, transient microvesicular fatty metamorphosis, prolonged extramedullary hematopoiesis, and portal hypercellularity with thickening and fibrosis.
Resumo:
Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disorder with the most severe pathology in the T lymphocytes and platelets. The disease arises from mutations in the gene encoding the WAS protein. T lymphocytes of affected males with WAS exhibit a severe disturbance of the actin cytoskeleton, suggesting that the WAS protein could regulate its organization. We show here that WAS protein interacts with a member of the Rho family of GTPases, Cdc42. This interaction, which is guanosine 5'-triphosphate (GTP)-dependent, was detected in cell lysates, in transient transfections and with purified recombinant proteins. A weaker interaction was also detected with Rac1 using WAS protein from cell lysates. It was also found that different mutant WAS proteins from three affected males retained their ability to interact with Cdc42 and that the level of expression of the WAS protein in these mutants was only 2-5% of normal. Taken together these data suggest that the WAS protein might function as a signal transduction adaptor downstream of Cdc42, and in affected males, the cytoskeletal abnormalities may result from a defect in Cdc42 signaling.
Resumo:
The hepatitis B virus X protein (HBx) sequence (154 aa) has been divided into six regions (A-F) based on its sequence homology with X proteins of other mammalian hepadnaviruses. Regions A, C, and E are more conserved and include all the four conserved cysteines (C7, C61, C69, and C137). To localize the regions of HBx important for transactivation, a panel of 10 deletion mutants (X5-X14) and 4 single point mutants (X1-X4), each corresponding to a conserved cysteine residue, was constructed by site-directed mutagenesis. A HBx-specific monoclonal antibody was developed and used to confirm the expression of mutants by Western blot. Transactivation property of the HBx mutants was studied on Rous sarcoma virus-long terminal repeat (RSV-LTR) in transient transfection assays. We observed that deletion of the most conserved region A or substitution of the N-terminal cysteine (C7) had no effect on transactivation. Deletion of the nonconserved regions B or F also had no deleterious effects. Deletions of regions C and D resulted in a significant loss of function. Substitution of both C61 and C69 present in region C, caused almost 90% loss of activity that could be partially overcome by transfecting more expression plasmid. The fully conserved 9 amino acid segment (residues 132 to 140) within region E including C137 appeared to be crucial for its activity. Finally, a truncated mutant X15 incorporating only regions C to E (amino acids 58-140) was able to stimulate the RSV-LTR quite efficiently, suggesting a crucial role played by this domain in transactivation function.
Resumo:
The terminal deoxynucleotidyltransferase (TdT) gene encodes a template-independent DNA polymerase that is expressed exclusively in immature lymphocytes. The TdT promoter lacks a TATA box, but an initiator element (Inr) overlaps the transcription start site. The Inr directs basal transcription and also mediates activated transcription in conjunction with an upstream element called D'. We have begun to address the fundamental question of why the TdT promoter contains an Inr rather than a TATA box. First, we tested the possibility that the TdT promoter lacks a TATA box because the -30 region is needed for the binding of an essential regulator. Mutations were introduced into the -30 region, and the mutants were tested in transient transfection and in vitro transcription assays. The mutations had only minor effects on promoter strength, suggesting that this first hypothesis is incorrect. Next, the effect of inserting a TATA box within the -30 region was tested. Although the TATA box enhanced promoter strength, appropriate regulation appeared to be maintained, as transcription in lymphocytes remained dependent on the D' element. Finally, a promoter variant containing a TATA box at -30, but a mutant Inr, was tested. Surprisingly, transcription from this variant, both in vitro and in vivo, was dramatically reduced. These results suggest that the TdT promoter, and possibly other natural promoters, contain an Inr element because one or more activator proteins that interact with surrounding control elements preferentially function in its presence.
Resumo:
The modulation of a family of cloned neuronal calcium channels by stimulation of a coexpressed mu opioid receptor was studied by transient expression in Xenopus oocytes. Activation of the morphine receptor with the synthetic enkephalin [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO) resulted in a rapid inhibition of alpha1A (by approximately 20%) and alpha1B (by approximately 55%) currents while alpha1C and alpha1E currents were not significantly affected. The opioid-induced effects on alpha1A and alpha1B currents were blocked by pertussis toxin and the GTP analogue guanosine 5'-[beta-thio]diphosphate. Similar to modulation of native calcium currents, DAMGO induced a slowing of the activation kinetics and exhibited a voltage-dependent inhibition that was partially relieved by application of strong depolarizing pulses. alpha1A currents were still inhibited in the absence of coexpressed Ca channel alpha2 and beta subunits, suggesting that the response is mediated by the alpha1 subunit. Furthermore, the sensitivity of alpha1A currents to DAMGO-induced inhibition was increased approximately 3-fold in the absence of a beta subunit. Overall, the results show that the alpha1A (P/Q type) and the alpha1B (N type) calcium channels are selectively modulated by a GTP-binding protein (G protein). The results raise the possibility of competitive interactions between beta subunit and G protein binding to the alpha1 subunit, shifting gating in opposite directions. At presynaptic terminals, the G protein-dependent inhibition may result in decreased synaptic transmission and play a key role in the analgesic effect of opioids and morphine.