947 resultados para Asbestos-cement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of three different aging methods (immersion in hot water, freeze–thaw cycles and wet–dry cycles) on the mechanical properties of GRC were studied and compared. Test results showed that immersion in hot water may be an unreliable method for modified GRC formulations, with it being in probability a very harmful procedure. A new aging method, mixing freeze–thaw cycles and wet–dry cycles, seems to be the most accurate simulation of weather conditions that produce a noticeable change in GRC mechanical properties. Future work should be carried out to find a correlation between real weather and the proposed aging method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GRC is a cementitious composite material made up of a cement mortar matrix and chopped glass fibers. Due to its outstanding mechanical properties, GRC has been widely used to produce cladding panels and some civil engineering elements. Impact failure of cladding panels made of GRC may occur during production if some tool falls onto the panel, due to stone or other objects impacting at low velocities or caused by debris projected after a blast. Impact failure of a front panel of a building may have not only an important economic value but also human lives may be at risk if broken pieces of the panel fall from the building to the pavement. Therefore, knowing GRC impact strength is necessary to prevent economic costs and putting human lives at risk. One-stage light gas gun is an impact test machine capable of testing different materials subjected to impact loads. An experimental program was carried out, testing GRC samples of five different formulations, commonly used in building industry. Steel spheres were shot at different velocities on square GRC samples. The residual velocity of the projectiles was obtained both using a high speed camera with multiframe exposure and measuring the projectile’s penetration depth in molding clay blocks. Tests were performed on young and artificially aged GRC samples to compare GRC’s behavior when subjected to high strain rates. Numerical simulations using a hydrocode were made to analyze which parameters are most important during an impact event. GRC impact strength was obtained from test results. Also, GRC’s embrittlement, caused by GRC aging, has no influence on GRC impact behavior due to the small size of the projectile. Also, glass fibers used in GRC production only maintain GRC panels’ integrity but have no influence on GRC’s impact strength. Numerical models have reproduced accurately impact tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of fly ash (FA) as an admixture to concrete is broadly extended for two main reasons: the reduction of costs that supposes the substitution of cement and the micro structural changes motivated by the mineral admixture. Regarding this second point, there is a consensus that considers that the ash generates a more compact concrete and a reduction in the size of the pore. However, the measure in which this contributes to the pozzolanic activity or as filler is not well defined. There is also no justification to the influence of the physical parameters, fineness of the grain and free water, in its behavior. This work studies the use of FA as a partial substitute of the cement in concretes of different workability (dry and wet) and the influence in the reactivity of the ash. The concrete of dry consistency which serves as reference uses a cement dose of 250 Kg/m 3 and the concrete of fluid consistency utilized a dose of cement of 350 Kg/m 3 . Two trademark of Portland Cement Type 1 were used. The first reached the resistant class for its fineness of grain and the second one for its composition. Moreover, three doses of FA have been used, and the water/binder ratio was constant in all the mixtures. We have studied the mechanical properties and the micro-structure of the concretes by means of compressive strength tests, mercury intrusion porosimetry (MIP) and thermal analysis (TA). The results of compressive strength tests allow us to observe that concrete mixtures with cements of the same classification and similar dosage of binder do not present the same mechanical behavior. These results show that the effective water/binder ratio has a major role in the development of the mechanical properties of concrete. The study of different dosages using TA, thermo-gravimetry and differential thermal analysis, revealed that the portlandite content is not restrictive in any of the dosages studied. Again, this proves that the rheology of the material influences the reaction rate and content of hydrated cement products. We conclude that the available free water is determinant in the efficiency of pozzolanic reaction. It is so that in accordance to the availability of free water, the ashes can react as an active admixture or simply change the porous distribution. The MIP shows concretes that do not exhibit significant changes in their mechanical behavior, but have suffered significant variation in their porous structure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously degradation studies carried out, over a number of different mortars by the research team, have shown that observed degradation does not exclusively depend on the solution equilibrium pH, nor the aggressive anions relative solubility. In our tests no reason was found that could allow us to explain, why same solubility anions with a lower pH are less aggressive than others. The aim of this paper is to study cement pastes behavior in aggressive environments. As observed in previous research, this cement pastes behaviors are not easily explained only taking into account only usual parameters, pH, solubility etc. Consequently the paper is about studying if solution physicochemical characteristics are more important in certain environments than specific pH values. The paper tries to obtain a degradation model, which starting from solution physicochemical parameters allows us to interpret the different behaviors shown by different composition cements. To that end, the rates of degradation of the solid phases were computed for each considered environment. Three cement have been studied: CEM I 42.5R/SR, CEM II/A-V 42.5R and CEM IV/B-(P-V) 32.5 N. The pastes have been exposed to five environments: sodium acetate/acetic acid 0.35 M, sodium sulfate solution 0.17 M, a solution representing natural water, saturated calcium hydroxide solution and laboratory environment. The attack mechanism was meant to be unidirectional, in order to achieve so; all sides of cylinders were sealed except from the attacked surface. The cylinders were taking out of the exposition environments after 2, 4, 7, 14, 30, 58 and 90 days. Both aggressive solution variations in solid phases and in different depths have been characterized. To each age and depth the calcium, magnesium and iron contents have been analyzed. Hydrated phases evolution studied, using thermal analysis, and crystalline compound changes, using X ray diffraction have been also analyzed. Sodium sulphate and water solutions stabilize an outer pH near to 8 in short time, however the stability of the most pH dependent phases is not the same. Although having similar pH and existing the possibility of forming a plaster layer near to the calcium leaching surface, this stability is greater than other sulphate solutions. Stability variations of solids formed by inverse diffusion, determine the rate of degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presented study is related to the EU 7 th Framework Programme CODICE (COmputationally Driven design of Innovative CEment-based materials). The main aim of the project is the development of a multi-scale model for the computer based simulation of mechanical and durability performance of cementitious materials. This paper reports results of micro/nano scale characterisation and mechanical property mapping of cementitious skeletons formed by the cement hydration at different ages. Using the statistical nanoindentation and micro-mechanical property mapping technique, intrinsic properties of different hydrate phases, and also the possible interaction (or overlapping) of different phases (e.g. calcium-silcate-hydrates) has been studied. Results of the mapping and statistical indentation testing appear to suggest the possible existence of more hydrate phases than the commonly reported LD and HD C-S-H and CH phases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Agent-Based Modelling and simulation (ABM) is a rather new approach for studying complex systems withinteracting autonomous agents that has lately undergone great growth in various fields such as biology, physics, social science, economics and business. Efforts to model and simulate the highly complex cement hydration process have been made over the past 40 years, with the aim of predicting the performance of concrete and designing innovative and enhanced cementitious materials. The ABM presented here - based on previous work - focuses on the early stages of cement hydration by modelling the physical-chemical processes at the particle level. The model considers the cement hydration process as a time and 3D space system, involving multiple diffusing and reacting species of spherical particles. Chemical reactions are simulated by adaptively selecting discrete stochastic simulation for the appropriate reaction, whenever that is necessary. Interactions between particles are also considered. The model has been inspired by reported cellular automata?s approach which provides detailed predictions of cement microstructure at the expense of significant computational difficulty. The ABM approach herein seeks to bring about an optimal balance between accuracy and computational efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The agent-based model presented here, comprises an algorithm that computes the degree of hydration, the water consumption and the layer thickness of C-S-H gel as functions of time for different temperatures and different w/c ratios. The results are in agreement with reported experimental studies, demonstrating the applicability of the model. As the available experimental results regarding elevated curing temperature are scarce, the model could be recalibrated in the future. Combining the agent-based computational model with TGA analysis, a semiempirical method is achieved to be used for better understanding the microstructure development in ordinary cement pastes and to predict the influence of temperature on the hydration process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim was to measure the behaviour of various mortars employed in livestock media in central Spain and to analyse the aggressiveness of pig slurry to cement blended with fly ash mortars. To achieve this, mortar specimens were immersed in ponds storing pig slurry. Mortar specimens, of 40 ? 40 ? 160 mm, were made from four types of cement commonly used and recommended for rural areas. The types were a sulphate-resistant Portland cement and three cements blended in different proportions with fly ash and limestone filler. After 3, 6, 12, 24, 36, 48 and 60 months of exposure, three or four specimens of each cement type were removed from the pond and washed with water. Their compressive strength and microstructure (X-ray diffraction, mercury intrusion pore-symmetry, thermal analysis and scanning electron microscopy) were then measured. Sulphate-resistant Portland cement (SR-PC), found to be more susceptible to degradation due to its greater proportion of macro-pores and increased total porosity, was found not to be suitable for use with livestock. After 60 months of immersion in the pig slurry medium, CEM II-A (40.3%) mortar retained the greatest compressive strength. Mortars with less than 20% replacement of cement by fly ash were found to be the most durable, with the most suitable mechanical behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation reports on a comparative study of the mechanical behavior at different temperatures of three different alkali-activated fly ash pastes chemically activated using sodium silicate. A control Portland cement (OPC) was used as a reference. In an attempt to simulate the conditions prevailing in the event of accidental fire, post-thermal mechanical tests were performed to determine the residual strength. It has therefore been established that FA based cements can be fabricated for construction purposes and these materials have great potential for fire resistance applications.