861 resultados para Artificial neural networks seasons
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Tese de Doutoramento em Engenharia Industrial e de Sistemas.
Advanced mapping of environmental data: Geostatistics, Machine Learning and Bayesian Maximum Entropy
Resumo:
This book combines geostatistics and global mapping systems to present an up-to-the-minute study of environmental data. Featuring numerous case studies, the reference covers model dependent (geostatistics) and data driven (machine learning algorithms) analysis techniques such as risk mapping, conditional stochastic simulations, descriptions of spatial uncertainty and variability, artificial neural networks (ANN) for spatial data, Bayesian maximum entropy (BME), and more.
Resumo:
This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.
Resumo:
Distribution of socio-economic features in urban space is an important source of information for land and transportation planning. The metropolization phenomenon has changed the distribution of types of professions in space and has given birth to different spatial patterns that the urban planner must know in order to plan a sustainable city. Such distributions can be discovered by statistical and learning algorithms through different methods. In this paper, an unsupervised classification method and a cluster detection method are discussed and applied to analyze the socio-economic structure of Switzerland. The unsupervised classification method, based on Ward's classification and self-organized maps, is used to classify the municipalities of the country and allows to reduce a highly-dimensional input information to interpret the socio-economic landscape. The cluster detection method, the spatial scan statistics, is used in a more specific manner in order to detect hot spots of certain types of service activities. The method is applied to the distribution services in the agglomeration of Lausanne. Results show the emergence of new centralities and can be analyzed in both transportation and social terms.
Resumo:
Self-organizing maps (Kohonen 1997) is a type of artificial neural network developedto explore patterns in high-dimensional multivariate data. The conventional versionof the algorithm involves the use of Euclidean metric in the process of adaptation ofthe model vectors, thus rendering in theory a whole methodology incompatible withnon-Euclidean geometries.In this contribution we explore the two main aspects of the problem:1. Whether the conventional approach using Euclidean metric can shed valid resultswith compositional data.2. If a modification of the conventional approach replacing vectorial sum and scalarmultiplication by the canonical operators in the simplex (i.e. perturbation andpowering) can converge to an adequate solution.Preliminary tests showed that both methodologies can be used on compositional data.However, the modified version of the algorithm performs poorer than the conventionalversion, in particular, when the data is pathological. Moreover, the conventional ap-proach converges faster to a solution, when data is \well-behaved".Key words: Self Organizing Map; Artificial Neural networks; Compositional data
Resumo:
This paper presents a review of methodology for semi-supervised modeling with kernel methods, when the manifold assumption is guaranteed to be satisfied. It concerns environmental data modeling on natural manifolds, such as complex topographies of the mountainous regions, where environmental processes are highly influenced by the relief. These relations, possibly regionalized and nonlinear, can be modeled from data with machine learning using the digital elevation models in semi-supervised kernel methods. The range of the tools and methodological issues discussed in the study includes feature selection and semisupervised Support Vector algorithms. The real case study devoted to data-driven modeling of meteorological fields illustrates the discussed approach.
Resumo:
Connections between Statistics and Archaeology have always appeared veryfruitful. The objective of this paper is to offer an outlook of somestatistical techniques that are being developed in the most recentyears and that can be of interest for archaeologists in the short run.
Resumo:
La sostenibilidad de los recursos marinos y de su ecosistema hace necesario un manejo responsable de las pesquerías. Conocer la distribución espacial del esfuerzo pesquero y en particular de las operaciones de pesca es indispensable para mejorar el monitoreo pesquero y el análisis de la vulnerabilidad de las especies frente a la pesca. Actualmente en la pesquería de anchoveta peruana, se recoge información del esfuerzo y capturas mediante un programa de observadores a bordo, pero esta solo representa una muestra de 2% del total de viajes pesqueros. Por otro lado, se dispone de información por cada hora (en promedio) de la posición de cada barco de la flota gracias al sistema de seguimiento satelital de las embarcaciones (VMS), aunque en estos no se señala cuándo ni dónde ocurrieron las calas. Las redes neuronales artificiales (ANN) podrían ser un método estadístico capaz de inferir esa información, entrenándose en una muestra para la cual sí conocemos las posiciones de calas (el 2% anteriormente referido), estableciendo relaciones analíticas entre las calas y ciertas características geométricas de las trayectorias observadas por el VMS y así, a partir de las últimas, identificar la posición de las operaciones de pesca. La aplicación de la red neuronal requiere un análisis previo que examine la sensibilidad de la red a variaciones en sus parámetros y bases de datos de entrenamiento, y que nos permita desarrollar criterios para definir la estructura de la red e interpretar sus resultados de manera adecuada. La problemática descrita en el párrafo anterior, aplicada específicamente a la anchoveta (Engraulis ringens) es detalllada en el primer capítulo, mientras que en el segundo se hace una revisión teórica de las redes neuronales. Luego se describe el proceso de construcción y pre-tratamiento de la base de datos, y definición de la estructura de la red previa al análisis de sensibilidad. A continuación se presentan los resultados para el análisis en los que obtenemos una estimación del 100% de calas, de las cuales aproximadamente 80% están correctamente ubicadas y 20% poseen un error de ubicación. Finalmente se discuten las fortalezas y debilidades de la técnica empleada, de métodos alternativos potenciales y de las perspectivas abiertas por este trabajo.
Resumo:
Counterfeit pharmaceutical products have become a widespread problem in the last decade. Various analytical techniques have been applied to discriminate between genuine and counterfeit products. Among these, Near-infrared (NIR) and Raman spectroscopy provided promising results.The present study offers a methodology allowing to provide more valuable information fororganisations engaged in the fight against counterfeiting of medicines.A database was established by analyzing counterfeits of a particular pharmaceutical product using Near-infrared (NIR) and Raman spectroscopy. Unsupervised chemometric techniques (i.e. principal component analysis - PCA and hierarchical cluster analysis - HCA) were implemented to identify the classes within the datasets. Gas Chromatography coupled to Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to determine the number of different chemical profiles within the counterfeits. A comparison with the classes established by NIR and Raman spectroscopy allowed to evaluate the discriminating power provided by these techniques. Supervised classifiers (i.e. k-Nearest Neighbors, Partial Least Squares Discriminant Analysis, Probabilistic Neural Networks and Counterpropagation Artificial Neural Networks) were applied on the acquired NIR and Raman spectra and the results were compared to the ones provided by the unsupervised classifiers.The retained strategy for routine applications, founded on the classes identified by NIR and Raman spectroscopy, uses a classification algorithm based on distance measures and Receiver Operating Characteristics (ROC) curves. The model is able to compare the spectrum of a new counterfeit with that of previously analyzed products and to determine if a new specimen belongs to one of the existing classes, consequently allowing to establish a link with other counterfeits of the database.
Resumo:
La interacció home-màquina per mitjà de la veu cobreix moltes àrees d’investigació. Es destaquen entre altres, el reconeixement de la parla, la síntesis i identificació de discurs, la verificació i identificació de locutor i l’activació per veu (ordres) de sistemes robòtics. Reconèixer la parla és natural i simple per a les persones, però és un treball complex per a les màquines, pel qual existeixen diverses metodologies i tècniques, entre elles les Xarxes Neuronals. L’objectiu d’aquest treball és desenvolupar una eina en Matlab per al reconeixement i identificació de paraules pronunciades per un locutor, entre un conjunt de paraules possibles, i amb una bona fiabilitat dins d’uns marges preestablerts. El sistema és independent del locutor que pronuncia la paraula, és a dir, aquest locutor no haurà intervingut en el procés d’entrenament del sistema. S’ha dissenyat una interfície que permet l’adquisició del senyal de veu i el seu processament mitjançant xarxes neuronals i altres tècniques. Adaptant una part de control al sistema, es podria utilitzar per donar ordres a un robot com l’Alfa6Uvic o qualsevol altre dispositiu.
Resumo:
The control and prediction of wastewater treatment plants poses an important goal: to avoid breaking the environmental balance by always keeping the system in stable operating conditions. It is known that qualitative information — coming from microscopic examinations and subjective remarks — has a deep influence on the activated sludge process. In particular, on the total amount of effluent suspended solids, one of the measures of overall plant performance. The search for an input–output model of this variable and the prediction of sudden increases (bulking episodes) is thus a central concern to ensure the fulfillment of current discharge limitations. Unfortunately, the strong interrelationbetween variables, their heterogeneity and the very high amount of missing information makes the use of traditional techniques difficult, or even impossible. Through the combined use of several methods — rough set theory and artificial neural networks, mainly — reasonable prediction models are found, which also serve to show the different importance of variables and provide insight into the process dynamics
Resumo:
Gas sensing systems based on low-cost chemical sensor arrays are gaining interest for the analysis of multicomponent gas mixtures. These sensors show different problems, e.g., nonlinearities and slow time-response, which can be partially solved by digital signal processing. Our approach is based on building a nonlinear inverse dynamic system. Results for different identification techniques, including artificial neural networks and Wiener series, are compared in terms of measurement accuracy.
Resumo:
Although the determination of remaining phosphorus (Prem) is simple, accurate values could also be estimated with a pedotransfer function (PTF) aiming at the additional use of soil analysis data and/or Prem replacement by an even simpler determination. The purpose of this paper was to develop a pedotransfer function to estimate Prem values of soils of the State of São Paulo based on properties with easier or routine laboratory determination. A pedotransfer function was developed by artificial neural networks (ANN) from a database of Prem values, pH values measured in 1 mol L-1 NaF solution (pH NaF) and soil chemical and physical properties of samples collected during soil classification activities carried out in the State of São Paulo by the Agronomic Institute of Campinas (IAC). Furthermore, a pedotransfer function was developed by regressing Prem values against the same predictor variables of the ANN-based PTF. Results showed that Prem values can be calculated more accurately with the ANN-based pedotransfer function with the input variables pH NaF values along with the sum of exchangeable bases (SB) and the exchangeable aluminum (Al3+) soil content. In addition, the accuracy of the Prem estimates by ANN-based PTF were more sensitive to increases in the experimental database size. Although the database used in this study was not comprehensive enough for the establishment of a definitive pedotrasnfer function for Prem estimation, results indicated the inclusion of Prem and pH NaF measurements among the soil testing evaluations as promising ind order to provide a greater database for the development of an ANN-based pedotransfer function for accurate Prem estimates from pH NaF, SB, and Al3+ values.