889 resultados para Artificial intelligence -- Computer programs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixture models implemented via the expectation-maximization (EM) algorithm are being increasingly used in a wide range of problems in pattern recognition such as image segmentation. However, the EM algorithm requires considerable computational time in its application to huge data sets such as a three-dimensional magnetic resonance (MR) image of over 10 million voxels. Recently, it was shown that a sparse, incremental version of the EM algorithm could improve its rate of convergence. In this paper, we show how this modified EM algorithm can be speeded up further by adopting a multiresolution kd-tree structure in performing the E-step. The proposed algorithm outperforms some other variants of the EM algorithm for segmenting MR images of the human brain. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cox's theorem states that, under certain assumptions, any measure of belief is isomorphic to a probability measure. This theorem, although intended as a justification of the subjectivist interpretation of probability theory, is sometimes presented as an argument for more controversial theses. Of particular interest is the thesis that the only coherent means of representing uncertainty is via the probability calculus. In this paper I examine the logical assumptions of Cox's theorem and I show how these impinge on the philosophical conclusions thought to be supported by the theorem. I show that the more controversial thesis is not supported by Cox's theorem. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological wastewater treatment is a complex, multivariate process, in which a number of physical and biological processes occur simultaneously. In this study, principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to profile and characterise Lagoon 115E, a multistage biological lagoon treatment system at Melbourne Water's Western Treatment Plant (WTP) in Melbourne, Australia. In this study, the objective was to increase our understanding of the multivariate processes taking place in the lagoon. The data used in the study span a 7-year period during which samples were collected as often as weekly from the ponds of Lagoon 115E and subjected to analysis. The resulting database, involving 19 chemical and physical variables, was studied using the multivariate data analysis methods PCA and PARAFAC. With these methods, alterations in the state of the wastewater due to intrinsic and extrinsic factors could be discerned. The methods were effective in illustrating and visually representing the complex purification stages and cyclic changes occurring along the lagoon system. The two methods proved complementary, with each having its own beneficial features. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper highlights the importance of design expertise, for designing liquid retaining structures, including subjective judgments and professional experience. Design of liquid retaining structures has special features different from the others. Being more vulnerable to corrosion problem, they have stringent requirements against serviceability limit state of crack. It is the premise of the study to transferring expert knowledge in a computerized blackboard system. Hybrid knowledge representation schemes, including production rules, object-oriented programming, and procedural methods, are employed to express engineering heuristics and standard design knowledge during the development of the knowledge-based system (KBS) for design of liquid retaining structures. This approach renders it possible to take advantages of the characteristics of each method. The system can provide the user with advice on preliminary design, loading specification, optimized configuration selection and detailed design analysis of liquid retaining structure. It would be beneficial to the field of retaining structure design by focusing on the acquisition and organization of expert knowledge through the development of recent artificial intelligence technology. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Virtual Learning Environment (VLE) is one of the fastest growing areas in educational technology research and development. In order to achieve learning effectiveness, ideal VLEs should be able to identify learning needs and customize solutions, with or without an instructor to supplement instruction. They are called Personalized VLEs (PVLEs). In order to achieve PVLEs success, comprehensive conceptual models corresponding to PVLEs are essential. Such conceptual modeling development is important because it facilitates early detection and correction of system development errors. Therefore, in order to capture the PVLEs knowledge explicitly, this paper focuses on the development of conceptual models for PVLEs, including models of knowledge primitives in terms of learner, curriculum, and situational models, models of VLEs in general pedagogical bases, and particularly, the definition of the ontology of PVLEs on the constructivist pedagogical principle. Based on those comprehensive conceptual models, a prototyped multiagent-based PVLE has been implemented. A field experiment was conducted to investigate the learning achievements by comparing personalized and non-personalized systems. The result indicates that the PVLE we developed under our comprehensive ontology successfully provides significant learning achievements. These comprehensive models also provide a solid knowledge representation framework for PVLEs development practice, guiding the analysis, design, and development of PVLEs. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single shortest path extraction algorithms have been used in a number of areas such as network flow and image analysis. In image analysis, shortest path techniques can be used for object boundary detection, crack detection, or stereo disparity estimation. Sometimes one needs to find multiple paths as opposed to a single path in a network or an image where the paths must satisfy certain constraints. In this paper, we propose a new algorithm to extract multiple paths simultaneously within an image using a constrained expanded trellis (CET) for feature extraction and object segmentation. We also give a number of application examples for our multiple paths extraction algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiplication and comultiplication of beliefs represent a generalisation of multiplication and comultiplication of probabilities as well as of binary logic AND and OR. Our approach follows that of subjective logic, where belief functions are expressed as opinions that are interpreted as being equivalent to beta probability distributions. We compare different types of opinion product and coproduct, and show that they represent very good approximations of the analytical product and coproduct of beta probability distributions. We also define division and codivision of opinions, and compare our framework with other logic frameworks for combining uncertain propositions. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beyond the inherent technical challenges, current research into the three dimensional surface correspondence problem is hampered by a lack of uniform terminology, an abundance of application specific algorithms, and the absence of a consistent model for comparing existing approaches and developing new ones. This paper addresses these challenges by presenting a framework for analysing, comparing, developing, and implementing surface correspondence algorithms. The framework uses five distinct stages to establish correspondence between surfaces. It is general, encompassing a wide variety of existing techniques, and flexible, facilitating the synthesis of new correspondence algorithms. This paper presents a review of existing surface correspondence algorithms, and shows how they fit into the correspondence framework. It also shows how the framework can be used to analyse and compare existing algorithms and develop new algorithms using the framework's modular structure. Six algorithms, four existing and two new, are implemented using the framework. Each implemented algorithm is used to match a number of surface pairs. Results demonstrate that the correspondence framework implementations are faithful implementations of existing algorithms, and that powerful new surface correspondence algorithms can be created. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power systems are large scale nonlinear systems with high complexity. Various optimization techniques and expert systems have been used in power system planning. However, there are always some factors that cannot be quantified, modeled, or even expressed by expert systems. Moreover, such planning problems are often large scale optimization problems. Although computational algorithms that are capable of handling large dimensional problems can be used, the computational costs are still very high. To solve these problems, in this paper, investigation is made to explore the efficiency and effectiveness of combining mathematic algorithms with human intelligence. It had been discovered that humans can join the decision making progresses by cognitive feedback. Based on cognitive feedback and genetic algorithm, a new algorithm called cognitive genetic algorithm is presented. This algorithm can clarify and extract human's cognition. As an important application of this cognitive genetic algorithm, a practical decision method for power distribution system planning is proposed. By using this decision method, the optimal results that satisfy human expertise can be obtained and the limitations of human experts can be minimized in the mean time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information about the world is often represented in the brain in the form of topographic maps. A paradigm example is the topographic representation of the visual world in the optic tectum/superior colliculus. This map initially forms during neural development using activity-independent molecular cues, most notably some type of chemospecific matching between molecular gradients in the retina and corresponding gradients in the tectum/superior colliculus. Exactly how this process might work has been studied both experimentally and theoretically for several decades. This review discusses the experimental data briefly, and then in more detail the theoretical models proposed. The principal conclusions are that (1) theoretical models have helped clarify several important ideas in the field, (2) earlier models were often more sophisticated than more recent models, and (3) substantial revisions to current modelling approaches are probably required to account for more than isolated subsets of the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With mixed feature data, problems are induced in modeling the gating network of normalized Gaussian (NG) networks as the assumption of multivariate Gaussian becomes invalid. In this paper, we propose an independence model to handle mixed feature data within the framework of NG networks. The method is illustrated using a real example of breast cancer data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic signature verification is a well-established and an active area of research with numerous applications such as bank check verification, ATM access, etc. This paper proposes a novel approach to the problem of automatic off-line signature verification and forgery detection. The proposed approach is based on fuzzy modeling that employs the Takagi-Sugeno (TS) model. Signature verification and forgery detection are carried out using angle features extracted from box approach. Each feature corresponds to a fuzzy set. The features are fuzzified by an exponential membership function involved in the TS model, which is modified to include structural parameters. The structural parameters are devised to take account of possible variations due to handwriting styles and to reflect moods. The membership functions constitute weights in the TS model. The optimization of the output of the TS model with respect to the structural parameters yields the solution for the parameters. We have also derived two TS models by considering a rule for each input feature in the first formulation (Multiple rules) and by considering a single rule for all input features in the second formulation. In this work, we have found that TS model with multiple rules is better than TS model with single rule for detecting three types of forgeries; random, skilled and unskilled from a large database of sample signatures in addition to verifying genuine signatures. We have also devised three approaches, viz., an innovative approach and two intuitive approaches using the TS model with multiple rules for improved performance. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batchmode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995-1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n = 692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD < 1 day (Prop(MAD < 1)). The significance of the comparison is assessed through a regression analysis. Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD = 1.77 days and Prop(MAD < 1) = 54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p-value = 0.063) and a significant (p-value = 0.044) increase of Prop(MAD