932 resultados para Area 08 - Ingegneria civile e Architettura
Resumo:
Il presente elaborato tratta l'analisi del collasso sismico del Santuario della Beata Vergine della Coronella sito a Galliera (Bo).Partendo dalla progettazione e verifica di una nuova copertura in legno lamellare si procede realizzando, per mezzo del software Straus7, due modelli del Santuario,uno con la nuova copertura e uno con la copertura crollata. Questi verranno poi, analizzati staticamente e dinamicamente e dal confronto dei risultati delle analisi verranno valutate le criticità e le migliorie apportate alla muratura, a seguito della realizzazione del nuovo tetto.
Resumo:
Nel presente lavoro di tesi è stato analizzato il SFM bolognese con particolare riguardo alla linea 6 prevedendo la sua realizzazione mediante la tecnologia tram-treno.
Resumo:
Laterally loaded piles are a typical situation for a large number of cases in which deep foundations are used. Dissertation herein reported, is a focus upon the numerical simulation of laterally loaded piles. In the first chapter the best model settings are largely discussed, so a clear idea about the effects of interface adoption, model dimension, refinement cluster and mesh coarseness is reached. At a second stage, there are three distinct parametric analyses, in which the model response sensibility is studied for variation of interface reduction factor, Eps50 and tensile cut-off. In addition, the adoption of an advanced soil model is analysed (NGI-ADP). This was done in order to use the complex behaviour (different undrained shear strengths are involved) that governs the resisting process of clay under short time static loads. Once set a definitive model, a series of analyses has been carried out with the objective of defining the resistance-deflection (P-y) curves for Plaxis3D (2013) data. Major results of a large number of comparisons made with curves from API (America Petroleum Institute) recommendation are that the empirical curves have almost the same ultimate resistance but a bigger initial stiffness. In the second part of the thesis a simplified structural preliminary design of a jacket structure has been carried out to evaluate the environmental forces that act on it and on its piles foundation. Finally, pile lateral response is studied using the empirical curves.
Resumo:
Verifiche di resistenza ed efficienza strutturale in caso di incendio per gli elementi strutturali di un edificio sito a L'Aquila. In particolar modo si è studiato il comportamento di travi e pilastri prefabbricati di tipo rep.
Resumo:
Valutazione di metori per la progettazione di isolatori da ponte mediante DDBD
Resumo:
Lo studio affrontato riguarda la tecnica della ristilatura armata dei giunti, quale metodologia di intervento atta a ripristinare la resistenza della muratura, depauperata dalla continua azione esercitata dal peso proprio delle strutture massive. La presenza di forze di compressione ha causato la creazione di fessure diffuse su tutta la muratura, che ha danneggiato oltre che la vita stessa dell’opera e quindi la sicurezza delle persone, anche l’aspetto architettonico come fonte di bellezza e ricordo di antiche civiltà. In questa ottica si inserisce la Tecnica di Repointing perchè riesca a soddisfare i requisiti richiesti di autenticità strutturale, durabilità, compatibilità e bassa invasività dell'intervento.
Resumo:
Studio del riprofilarsi di due sezioni di spiaggia (protetta e non) secondo diverse condizioni meteo-marine (scenario presente e scenario a breve termine) nella località di Cesenatico. Tale lavoro è stato svolto tramite il software XBeach, riscontrando la sua validità e gettando solide basi per lavori futuri in altre località.
Resumo:
Influenza della deformabilità di piano in analisi non lineari di edifici in C.A.
Resumo:
Thanks to the increasing slenderness and lightness allowed by new construction techniques and materials, the effects of wind on structures became in the last decades a research field of great importance in Civil Engineering. Thanks to the advances in computers power, the numerical simulation of wind tunnel tests has became a valid complementary activity and an attractive alternative for the future. Due to its flexibility, during the last years, the computational approach gained importance with respect to the traditional experimental investigation. However, still today, the computational approach to fluid-structure interaction problems is not as widely adopted as it could be expected. The main reason for this lies in the difficulties encountered in the numerical simulation of the turbulent, unsteady flow conditions generally encountered around bluff bodies. This thesis aims at providing a guide to the numerical simulation of bridge deck aerodynamic and aeroelastic behaviour describing in detail the simulation strategies and setting guidelines useful for the interpretation of the results.
Resumo:
Shape memory materials (SMMs) represent an important class of smart materials that have the ability to return from a deformed state to their original shape. Thanks to such a property, SMMs are utilized in a wide range of innovative applications. The increasing number of applications and the consequent involvement of industrial players in the field have motivated researchers to formulate constitutive models able to catch the complex behavior of these materials and to develop robust computational tools for design purposes. Such a research field is still under progress, especially in the prediction of shape memory polymer (SMP) behavior and of important effects characterizing shape memory alloy (SMA) applications. Moreover, the frequent use of shape memory and metallic materials in biomedical devices, particularly in cardiovascular stents, implanted in the human body and experiencing millions of in-vivo cycles by the blood pressure, clearly indicates the need for a deeper understanding of fatigue/fracture failure in microsize components. The development of reliable stent designs against fatigue is still an open subject in scientific literature. Motivated by the described framework, the thesis focuses on several research issues involving the advanced constitutive, numerical and fatigue modeling of elastoplastic and shape memory materials. Starting from the constitutive modeling, the thesis proposes to develop refined phenomenological models for reliable SMA and SMP behavior descriptions. Then, concerning the numerical modeling, the thesis proposes to implement the models into numerical software by developing implicit/explicit time-integration algorithms, to guarantee robust computational tools for practical purposes. The described modeling activities are completed by experimental investigations on SMA actuator springs and polyethylene polymers. Finally, regarding the fatigue modeling, the thesis proposes the introduction of a general computational approach for the fatigue-life assessment of a classical stent design, in order to exploit computer-based simulations to prevent failures and modify design, without testing numerous devices.
Resumo:
The cone penetration test (CPT), together with its recent variation (CPTU), has become the most widely used in-situ testing technique for soil profiling and geotechnical characterization. The knowledge gained over the last decades on the interpretation procedures in sands and clays is certainly wide, whilst very few contributions can be found as regards the analysis of CPT(u) data in intermediate soils. Indeed, it is widely accepted that at the standard rate of penetration (v = 20 mm/s), drained penetration occurs in sands while undrained penetration occurs in clays. However, a problem arise when the available interpretation approaches are applied to cone measurements in silts, sandy silts, silty or clayey sands, since such intermediate geomaterials are often characterized by permeability values within the range in which partial drainage is very likely to occur. Hence, the application of the available and well-established interpretation procedures, developed for ‘standard’ clays and sands, may result in invalid estimates of soil parameters. This study aims at providing a better understanding on the interpretation of CPTU data in natural sand and silt mixtures, by taking into account two main aspects, as specified below: 1)Investigating the effect of penetration rate on piezocone measurements, with the aim of identifying drainage conditions when cone penetration is performed at a standard rate. This part of the thesis has been carried out with reference to a specific CPTU database recently collected in a liquefaction-prone area (Emilia-Romagna Region, Italy). 2)Providing a better insight into the interpretation of piezocone tests in the widely studied silty sediments of the Venetian lagoon (Italy). Research has focused on the calibration and verification of some site-specific correlations, with special reference to the estimate of compressibility parameters for the assessment of long-term settlements of the Venetian coastal defences.
Resumo:
In this work, the Generalized Beam Theory (GBT) is used as the main tool to analyze the mechanics of thin-walled beams. After an introduction to the subject and a quick review of some of the most well-known approaches to describe the behaviour of thin-walled beams, a novel formulation of the GBT is presented. This formulation contains the classic shear-deformable GBT available in the literature and contributes an additional description of cross-section warping that is variable along the wall thickness besides along the wall midline. Shear deformation is introduced in such a way that the classical shear strain components of the Timoshenko beam theory are recovered exactly. According to the new kinematics proposed, a reviewed form of the cross-section analysis procedure is devised, based on a unique modal decomposition. Later, a procedure for a posteriori reconstruction of all the three-dimensional stress components in the finite element analysis of thin-walled beams using the GBT is presented. The reconstruction is simple and based on the use of three-dimensional equilibrium equations and of the RCP procedure. Finally, once the stress reconstruction procedure is presented, a study of several existing issues on the constitutive relations in the GBT is carried out. Specifically, a constitutive law based on mirroring the kinematic constraints of the GBT model into a specific stress field assumption is proposed. It is shown that this method is equally valid for isotropic and orthotropic beams and coincides with the conventional GBT approach available in the literature. Later on, an analogous procedure is presented for the case of laminated beams. Lastly, as a way to improve an inherently poor description of shear deformability in the GBT, the introduction of shear correction factors is proposed. Throughout this work, numerous examples are provided to determine the validity of all the proposed contributions to the field.
Resumo:
The thesis analyses the hydrodynamic induced by an array of Wave energy Converters (WECs), under an experimental and numerical point of view. WECs can be considered an innovative solution able to contribute to the green energy supply and –at the same time– to protect the rear coastal area under marine spatial planning considerations. This research activity essentially rises due to this combined concept. The WEC under exam is a floating device belonging to the Wave Activated Bodies (WAB) class. Experimental data were performed at Aalborg University in different scales and layouts, and the performance of the models was analysed under a variety of irregular wave attacks. The numerical simulations performed with the codes MIKE 21 BW and ANSYS-AQWA. Experimental results were also used to calibrate the numerical parameters and/or to directly been compared to numerical results, in order to extend the experimental database. Results of the research activity are summarized in terms of device performance and guidelines for a future wave farm installation. The device length should be “tuned” based on the local climate conditions. The wave transmission behind the devices is pretty high, suggesting that the tested layout should be considered as a module of a wave farm installation. Indications on the minimum inter-distance among the devices are provided. Furthermore, a CALM mooring system leads to lower wave transmission and also larger power production than a spread mooring. The two numerical codes have different potentialities. The hydrodynamics around single and multiple devices is obtained with MIKE 21 BW, while wave loads and motions for a single moored device are derived from ANSYS-AQWA. Combining the experimental and numerical it is suggested –for both coastal protection and energy production– to adopt a staggered layout, which will maximise the devices density and minimize the marine space required for the installation.
Resumo:
Sheet pile walls are one of the oldest earth retention systems utilized in civil engineering projects. They are used for various purposes; such as excavation support system, cofferdams, cut-off walls under dams, slope stabilization, waterfront structures, and flood walls. Sheet pile walls are one of the most common types of quay walls used in port construction. The worldwide increases in utilization of large ships for transportation have created an urgent need of deepening the seabed within port areas and consequently the rehabilitation of its wharfs. Several methods can be used to increase the load-carrying capacity of sheet-piling walls. The use of additional anchored tie rods grouted into the backfill soil and arranged along the exposed wall height is one of the most practical and appropriate solutions adopted for stabilization and rehabilitation of the existing quay wall. The Ravenna Port Authority initiated a project to deepen the harbor bottom at selected wharves. An extensive parametric study through the finite element program, PLAXIS 2D, version 2012 was carried out to investigate the enhancement of using submerged grouted anchors technique on the load response of sheet-piling quay wall. The influence of grout-ties area, length of grouted body, anchor inclination and anchor location were considered and evaluated due to the effect of different system parameters. Also a comparative study was conducted by Plaxis 2D and 3D program to investigate the behavior of these sheet pile quay walls in terms of horizontal displacements induced along the sheet pile wall and ground surface settlements as well as the anchor force and calculated factor of safety. Finally, a comprehensive study was carried out by using different constitutive models to simulate the mechanical behavior of the soil to investigate the effect of these two models (Mohr-Coulomb and Hardening Soil) on the behavior of these sheet pile quay walls.
Resumo:
The present thesis focuses on elastic waves behaviour in ordinary structures as well as in acousto-elastic metamaterials via numerical and experimental applications. After a brief introduction on the behaviour of elastic guided waves in the framework of non-destructive evaluation (NDE) and structural health monitoring (SHM) and on the study of elastic waves propagation in acousto-elastic metamaterials, dispersion curves for thin-walled beams and arbitrary cross-section waveguides are extracted via Semi-Analytical Finite Element (SAFE) methods. Thus, a novel strategy tackling signal dispersion to locate defects in irregular waveguides is proposed and numerically validated. Finally, a time-reversal and laser-vibrometry based procedure for impact location is numerically and experimentally tested. In the second part, an introduction and a brief review of the basic definitions necessary to describe acousto-elastic metamaterials is provided. A numerical approach to extract dispersion properties in such structures is highlighted. Afterwards, solid-solid and solid-fluid phononic systems are discussed via numerical applications. In particular, band structures and transmission power spectra are predicted for 1P-2D, 2P-2D and 2P-3D phononic systems. In addition, attenuation bands in the ultrasonic as well as in the sonic frequency regimes are experimentally investigated. In the experimental validation, PZTs in a pitch-catch configuration and laser vibrometric measurements are performed on a PVC phononic plate in the ultrasonic frequency range and sound insulation index is computed for a 2P-3D phononic barrier in the sonic frequency range. In both cases the numerical-experimental results comparison confirms the existence of the numerical predicted band-gaps. Finally, the feasibility of an innovative passive isolation strategy based on giant elastic metamaterials is numerically proved to be practical for civil structures. In particular, attenuation of seismic waves is demonstrated via finite elements analyses. Further, a parametric study shows that depending on the soil properties, such an earthquake-proof barrier could lead to significant reduction of the superstructure displacement.