659 resultados para Aquifer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive portions of the southern Everglades are characterized by series of elongated, raised peat ridges and tree islands oriented parallel to the predominant flow direction, separated by intervening sloughs. Tall herbs or woody species are associated with higher elevations and shorter emergent or floating species are associated with lower elevations. The organic soils in this “Ridge-and-Slough” landscape have been stable over millennia in many locations, but degrade over decades under altered hydrologic conditions. We examined soil, pore water, and leaf phosphorus (P) and nitrogen (N) distributions in six Ridge and Slough communities in Shark Slough, Everglades National Park. We found P enrichment to increase and N to decrease monotonically along a gradient from the most persistently flooded sloughs to rarely flooded ridge environments, with the most dramatic change associated with the transition from marsh to forest. Leaf N:P ratios indicated that the marsh communities were strongly P-limited, while data from several forest types suggested either N-limitation or co-limitation by N and P. Ground water stage in forests exhibited a daytime decrease and partial nighttime recovery during periods of surface exposure. The recovery phase suggested re-supply from adjacent flooded marshes or the underlying aquifer, and a strong hydrologic connection between ridge and slough. We therefore developed a simple steady-state model to explore a mechanism by which a phosphorus conveyor belt driven by both evapotranspiration and the regional flow gradient can contribute to the characteristic Ridge and Slough pattern. The model demonstrated that evapotranspiration sinks at higher elevations can draw in low concentration marsh waters, raising local soil and water P concentrations. Focusing of flow and nutrients at the evapotranspiration zone is not strong enough to overcome the regional gradient entirely, allowing the nutrient to spread downstream and creating an elongated concentration plume in the direction of flow. Our analyses suggest that autogenic processes involving the effects of initially small differences in topography, via their interactions with hydrology and nutrient availability, can produce persistent physiographic patterns in the organic sediments of the Everglades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concentrations of tritium (3H) and helium isotopes (3He and4He) were used as tracers of groundwater flow in the surficial aquifer system (SAS) beneath Everglades National Park (ENP), south Florida. From ages determined by 3H/3He dating techniques, groundwater within the upper 28 m originated within the last 30 years. Below 28 m, waters originated prior to 30 years before present with evidence of mixing at the interface. Interannual variation of the 3H/3He ages within the upper 28 m was significant throughout the 3 year investigation, corresponding with varying hydrologic conditions. In the region of Taylor Slough Bridge, younger groundwater was consistently detected below older groundwater in the Biscayne Aquifer, suggesting preferential flow to the lower part of the aquifer. An increase in 4He with depth in the SAS indicated that radiogenic 4He produced in the underlying Hawthorn Group migrates into the SAS by diffusion. Higher Δ4He values in brackish groundwaters compared to fresh waters from similar depths suggested a possible enhanced vertical transport of4He in the seawater mixing zone. Groundwater salinity measurements indicated the presence of a wide (6–28 km) seawater mixing zone. Comparison of groundwater levels with surface water levels in this zone indicated the potential for brackish groundwater discharge to the overlying Everglades surface water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the potential release of from carbonate aquifers exposed to seawater intrusion. Adsorption and desorption of in the presence of deionized water (DIW) and seawater were conducted on a large block of Pleistocene age limestone to simulate the effects of seawater intrusion into a coastal carbonate aquifer at the laboratory scale. The limestone showed strong adsorption of in DIW, while adsorption was significantly less in the presence of seawater. Dissolution of CaCO3 was found to prevent adsorption at salinities less than 30 psu. Adsorption of was limited at higher salinities (30–33 psu), due to competition with ions for adsorption sites. At a salinity3 precipitated. Concentrations of between 2 and 5 μmol/L were released by desorption when the limestone was exposed to seawater. The results of this study suggest that as seawater intrudes into an originally freshwater coastal aquifer, adsorbed may be released into the groundwater. Consequently, adsorbed is expected to be released from coastal carbonate aquifers world-wide as sea level continues to rise exposing more of the freshwater aquifer to seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this manuscript we define a new term we call coastal groundwater discharge (CGD), which is related to submarine groundwater discharge (SGD), but occurs when seawater intrudes inland to force brackish groundwater to discharge to the coastal wetlands. A hydrologic and geochemical investigation of both the groundwater and surface water in the southern Everglades was conducted to investigate the occurrence of CGD associated with seawater intrusion. During the wet season, the surface water chemistry remained fresh. Enhanced chloride, sodium, and calcium concentrations, indicative of brackish groundwater discharge, were observed in the surface water during the dry season. Brackish groundwaters of the southern Everglades contain 1–2.3μM concentrations of total phosphorus (TP). These concentrations exceed the expected values predicted by conservative mixing of local fresh groundwater and intruding seawater, which both have TPμM. The additional source of TP may be from seawater sediments or from the aquifer matrix as a result of water–rock interactions (such as carbonate mineral dissolution and ion exchange reactions) induced by mixing fresh groundwater with intruding seawater. We hypothesize that CGD maybe an additional source of phosphorus (a limiting nutrient) to the coastal wetlands of the southern Everglades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 5,280 km2 Sian Ka’an Biosphere Reserve includes pristine wetlands fed by ground water from the karst aquifer of the Yucatan Peninsula, Mexico. The inflow through underground karst structures is hard to observe making it difficult to understand, quantify, and predict the wetland dynamics. Remotely sensed Synthetic Aperture Radar (SAR) amplitude and phase observations offer new opportunities to obtain information on hydrologic dynamics useful for wetland management. Backscatter amplitude of SAR data can be used to map flooding extent. Interferometric processing of the backscattered SAR phase data (InSAR) produces temporal phase-changes that can be related to relative water level changes in vegetated wetlands. We used 56 RADARSAT-1 SAR acquisitions to calculate 38 interferograms and 13 flooding maps with 24 day and 48 day time intervals covering July 2006 to March 2008. Flooding extent varied between 1,067 km2 and 2,588 km2 during the study period, and main water input was seen to take place in sloughs during October–December. We propose that main water input areas are associated with water-filled faults that transport ground water from the catchment to the wetlands. InSAR and Landsat data revealed local-scale water divides and surface water flow directions within the wetlands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A LLE-GC-MS method was developed to detect PPCPs in surface water samples from Big Cypress National Park, Everglades National Park and Biscayne National Park in South Florida. The most frequently found PPCPs were caffeine, DEET and triclosan with detected maximum concentration of 169 ng/L, 27.9 ng/L and 10.9 ng/L, respectively. The detection frequencies of hormones were less than PPCPs. Detected maximal concentrations of estrone, 17β-estradiol, coprostan-3-ol, coprostane and coprostan-3-one were 5.98 ng/L, 3.34 ng/L, 16.5 ng/L, 13.5 ng/L and 6.79 ng/L, respectively. An ASE-SPE-GC-MS method was developed and applied to the analysis of the sediment and soil area where reclaimed water was used for irrigation. Most analytes were below detection limits, even though some of analytes were detected in the reclaimed water at relatively high concentrations corroborating the fact that PPCPs do not significantly partition to mineral phases. An online SPE-HPLC-APPI-MS/MS method and an online SPE-HPLC-HESI-MS/MS method were developed to analyze reclaimed water and drinking water samples. In the reclaimed water study, reclaimed water samples were collected from the sprinkler for a year-long period at Florida International University Biscayne Bay Campus, where reclaimed water was reused for irrigation. Analysis results showed that several analytes were continuously detected in all reclaimed water samples. Coprostanol, bisphenol A and DEET's maximum concentration exceeded 10 μg/L (ppb). The four most frequently detected compounds were diphenhydramine (100%), DEET (98%), atenolol (98%) and carbamazepine (96%). In the study of drinking water, 54 tap water samples were collected from the Miami-Dade area. The maximum concentrations of salicylic acid, ibuprofen and DEET were 521 ng/L, 301 ng/L and 290 ng/L, respectively. The three most frequently detected compounds were DEET (93%), carbamazepine (43%) and salicylic acid (37%), respectively. Because the source of drinking water in Miami-Dade County is the relatively pristine Biscayne aquifer, these findings suggest the presence of wastewater intrusions into the delivery system or the onset of direct influence of surface waters into the shallow aquifer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combination of statistical and interpolation methods and Geographic Information System (GIS) spatial analysis was used to evaluate the spatial and temporal changes in groundwater Cl− concentrations in Collier and Lee Counties (southwestern Florida), and Miami-Dade and Broward Counties (southeastern Florida), since 1985. In southwestern Florida, the average Cl− concentrations in the shallow wells (0–43 m) in Collier and Lee Counties increased from 132 mg L−1 in 1985 to 230 mg L−1 in 2000. The average Cl− concentrations in the deep wells (>43 m) of southwestern Florida increased from 392 mg L−1 in 1985 to 447 mg L−1 in 2000. Results also indicated a positive correlation between the mean sea level and Cl− concentrations and between the mean sea level and groundwater levels for the shallow wells. Concentrations in the Biscayne Aquifer (southeastern Florida) were significantly higher than those of southwestern Florida. The average Cl− concentrations increased from 159 mg L−1 in 1985 to 470 mg L−1 in 2010 for the shallow wells (<33 m) and from 1360 mg L−1 in 1985 to 2050 mg L−1 in 2010 for the deep wells (>33 m). In the Biscayne Aquifer, wells showed a positive or negative correlation between mean sea level and Cl− concentrations according to their location with respect to the saltwater intrusion line. Wells located inland behind canal control structures and west of the saltwater intrusion line showed negative correlation values, whereas wells located east of the saltwater intrusion line showed positive values. Overall, the results indicated that since 1985, there was a potential decline in the available freshwater resources estimated at about 12–17% of the available drinking-quality groundwater of the southeastern study area located in the Biscayne Aquifer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel modeling approach is applied to karst hydrology. Long-standing problems in karst hydrology and solute transport are addressed using Lattice Boltzmann methods (LBMs). These methods contrast with other modeling approaches that have been applied to karst hydrology. The motivation of this dissertation is to develop new computational models for solving ground water hydraulics and transport problems in karst aquifers, which are widespread around the globe. This research tests the viability of the LBM as a robust alternative numerical technique for solving large-scale hydrological problems. The LB models applied in this research are briefly reviewed and there is a discussion of implementation issues. The dissertation focuses on testing the LB models. The LBM is tested for two different types of inlet boundary conditions for solute transport in finite and effectively semi-infinite domains. The LBM solutions are verified against analytical solutions. Zero-diffusion transport and Taylor dispersion in slits are also simulated and compared against analytical solutions. These results demonstrate the LBM’s flexibility as a solute transport solver. The LBM is applied to simulate solute transport and fluid flow in porous media traversed by larger conduits. A LBM-based macroscopic flow solver (Darcy’s law-based) is linked with an anisotropic dispersion solver. Spatial breakthrough curves in one and two dimensions are fitted against the available analytical solutions. This provides a steady flow model with capabilities routinely found in ground water flow and transport models (e.g., the combination of MODFLOW and MT3D). However the new LBM-based model retains the ability to solve inertial flows that are characteristic of karst aquifer conduits. Transient flows in a confined aquifer are solved using two different LBM approaches. The analogy between Fick’s second law (diffusion equation) and the transient ground water flow equation is used to solve the transient head distribution. An altered-velocity flow solver with source/sink term is applied to simulate a drawdown curve. Hydraulic parameters like transmissivity and storage coefficient are linked with LB parameters. These capabilities complete the LBM’s effective treatment of the types of processes that are simulated by standard ground water models. The LB model is verified against field data for drawdown in a confined aquifer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogeologic variables controlling groundwater exchange with inflow and flow-through lakes were simulated using a three-dimensional numerical model (MODFLOW) to investigate and quantify spatial patterns of lake bed seepage and hydraulic head distributions in the porous medium surrounding the lakes. Also, the total annual inflow and outflow were calculated as a percentage of lake volume for flow-through lake simulations. The general exponential decline of seepage rates with distance offshore was best demonstrated at lower anisotropy ratio (i.e., Kh/Kv = 1, 10), with increasing deviation from the exponential pattern as anisotropy was increased to 100 and 1000. 2-D vertical section models constructed for comparison with 3-D models showed that groundwater heads and seepages were higher in 3-D simulations. Addition of low conductivity lake sediments decreased seepage rates nearshore and increased seepage rates offshore in inflow lakes, and increased the area of groundwater inseepage on the beds of flow-through lakes. Introduction of heterogeneity into the medium decreased the water table and seepage ratesnearshore, and increased seepage rates offshore in inflow lakes. A laterally restricted aquifer located at the downgradient side of the flow-through lake increased the area of outseepage. Recharge rate, lake depth and lake bed slope had relatively little effect on the spatial patterns of seepage rates and groundwater exchange with lakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing dependence on groundwater in the Wakal River basin, India, jeopardizes water supply sustainability. A numerical groundwater model was developed to better understand the aquifer system and to evaluate its potential in terms of quantity and replenishment. Potential artificial recharge areas were delineated using landscape and hydrogeologic parameters, Geographic Information System (GIS), and remote sensing. Groundwater models are powerful tools for recharge estimation when transmissivity is known. Proper recharge must be applied to reproduce field-measured heads. The model showed that groundwater levels could decline significantly if there are two drought years in every four years that result in reduced recharge, and groundwater withdrawal is increased by 15%. The effect of such drought is currently uncertain however, because runoff from the basin is unknown. Remote sensing and GIS revealed areas with slopes less than 5%, forest cover, and Normalized Difference Vegetative Index greater than 0.5 that are suitable recharge sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The understanding of the occurrence and flow of groundwater in the subsurface is of fundamental importance in the exploitation of water, just like knowledge of all associated hydrogeological context. These factors are primarily controlled by geometry of a certain pore system, given the nature of sedimentary aquifers. Thus, the microstructural characterization, as the interconnectivity of the system, it is essential to know the macro properties porosity and permeability of reservoir rock, in which can be done on a statistical characterization by twodimensional analysis. The latter is being held on a computing platform, using image thin sections of reservoir rock, allowing the prediction of the properties effective porosity and hydraulic conductivity. For Barreiras Aquifer to obtain such parameters derived primarily from the interpretation of tests of aquifers, a practice that usually involves a fairly complex logistics in terms of equipment and personnel required in addition to high cost of operation. Thus, the analysis and digital image processing is presented as an alternative tool for the characterization of hydraulic parameters, showing up as a practical and inexpensive method. This methodology is based on a flowchart work involving sampling, preparation of thin sections and their respective images, segmentation and geometric characterization, three-dimensional reconstruction and flow simulation. In this research, computational image analysis of thin sections of rocks has shown that aquifer storage coefficients ranging from 0,035 to 0,12 with an average of 0,076, while its hydrogeological substrate (associated with the top of the carbonate sequence outcropping not region) presents effective porosities of the order of 2%. For the transport regime, it is evidenced that the methodology presents results below of those found in the bibliographic data relating to hydraulic conductivity, mean values of 1,04 x10-6 m/s, with fluctuations between 2,94 x10-6 m/s and 3,61x10-8 m/s, probably due to the larger scale study and the heterogeneity of the medium studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detection of emerging interest microcontaminants in environmental samples of surface water, groundwater, drinking water, wastewater and effluents from water and sewage treatment plants (WTP and STP), in many countries, suggests these pollutants are widespread in the environment, mainly in urban areas. This is a reason for great concern, since many of these compounds are potentially harmful for humans other living beings, and they are not efficiently removed in the majority of WTP and STP, which is exacerbated by precariousness of water supply and sanitation services. In Natal, like other Brazilian cities, the sewage system serves only part of the urban area (about 30%), so that the rest of the wastewater is infiltrated in the sandy soil of the region in cesspool-dry well systems. This has resulted in contamination of groundwater in the area (sand-dune barrier aquifer, which supplies more than 50% of the city population), which has been observed by the increase in nitrate concentration in supply wells. The vulnerability of the sanddune barrier aquifer, combined with reports of the presence of emerging interest microcontaminants in Brazil and worldwide, led to this research, which investigated the occurrence of fifteen microcontaminants in Natal groundwater and sewage. Samples were collected at five wells used for water supply, the raw sewage and the effluents from biological reactors from STP (UASB and activated sludge reactors). Two samples of each sample were taken, with one week apart between the samples. To determine the contaminants, extraction of aquifer water, and raw and treated sewage samples were performed, through the technique of using SPE Strata X cartridge (Phenomenex®) to the aquifer water, and Strata SAX and Strata X (Phenomenex® ) for samples of raw and treated sewage. Subsequently the extracts were analyzed using GC-MS technique. Much of the analyzed microcontaminants were detected in groundwater and sewage. The concentrations in groundwater are generally lower than those found in the sewers. Some of the compounds (estrone, estradiol, bisphenol A, caffeine, diclofenac, naproxen, paracetamol and ibuprofen) are partially removed at STP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A type of macro drainage solution widely used in urban areas with predomi-nance of closed catchments (basins without outlet) is the implementation of detention and infiltration reservoirs (DIR). This type of solution has the main function of storing surface runoff and to promote soil infiltration and, consequently, aquifer recharge. The practice is to avoid floods in the drainage basin low-lying areas. The catchment waterproofing reduces the distributed groundwater recharge in urban areas, as is the case of Natal city, RN. However, the advantage of DIR is to concentrate the runoff and to promote aquifer recharge to an amount that can surpass the distributed natu-ral recharge. In this paper, we proposed studying a small urban drainage catchment, named Experimental Mirassol Watershed (EMW) in Natal, RN, whose outlet is a DIR. The rainfall-runoff transformation processes, water accumulation in DIR and the pro-cess of infiltration and percolation in the soil profile until the free aquifer were mod-eled and, from rainfall event observations, water levels in DIR and free aquifer water level measurements, and also, parameter values determination, it is was enabled to calibrate and modeling these combined processes. The mathematical modeling was carried out from two numerical models. We used the rainfall-runoff model developed by RIGHETTO (2014), and besides, we developed a one-dimensional model to simu-late the soil infiltration, percolation, redistribution soil water and groundwater in a combined system to the reservoir water balance. Continuous simulation was run over a period of eighteen months in time intervals of one minute. The drainage basin was discretized in blocks units as well as street reaches and the soil profile in vertical cells of 2 cm deep to a total depth of 30 m. The generated hydrographs were transformed into inlet volumes to the DIR and then, it was carried out water balance in these time intervals, considering infiltration and percolation of water in the soil profile. As a re-sult, we get to evaluate the storage water process in DIR as well as the infiltration of water, redistribution into the soil and the groundwater aquifer recharge, in continuous temporal simulation. We found that the DIR has good performance to storage excess water drainage and to contribute to the local aquifer recharge process (Aquifer Dunas / Barreiras).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study area is within the Pirangi River Basin, eastern sector of Rio Grande do Norte state, where is located of the Parnamirim city. It has an area of approximately 370 km². Urbanization has developed much fast without an appropriate infrastructure, mainly by the lack of sewage systems, with risks of contamination of groundwater that may cause serious damage to the health of the population. The Barreiras Aquifer System groundwater in the area represents the main source of water supply for urban and rural populations. The use of groundwater occurs without adequate planning and therefore, important recharge areas are being occupied. This study was conducted to quantify the use and evaluation of the potential of groundwater, in order to increase good water quality supply and lower risks of being affected by polluting activities. With these objectives, the following activities were carried out: 268 points of water have been registered; characterization of the lithological, thickness and hydrogeological structure of the Barreiras aquifer, based on the correlation of well logs; and evaluation of hydrodynamic parameters of the aquifer, from the interpretation of results well pumping tests. It was found that the saturated thickness increases from west to east towards the sea, with values ranging from 15,47-56,5 m with an average of 32,45 m. The hydrodynamic parameters using Cooper-Jacob method were: average transmissivity of 5,9x10-3 m²/s and average hydraulic conductivity 2,82x10-4 m/s. The effective porosity is of 15%, obtained by applying Biecinski equation. The potentiometric map shows the main direction of groundwater flow, from west to east, and identifies the recharge areas corresponding to the region of the tablelands of the "Barreiras". The river valleys refer to the discharge areas of the aquifer system. The Recharge was estimated at 253 mm/year, which corresponds to the 16.4% rate of infiltration.