974 resultados para Applied microbiology
Resumo:
The aim of the study was to compare the antimicrobial activities of freshly-made, heat-treated (HT), and 14 d stored (+)-Catechin solutions with (+)-catechin flavanol isomers in the presence of copper sulphate. (+)-Catechin activity was investigated when combined with different ratios of Cu2+; 100°C heat treatment; autoclaving; and 14 d storage against Staphylococcus aureus. Cu2+-(+)-Catechin complexation, isomer structure-activity relationships, and H2O2 generation were also investigated. Freshly-made, HT, and 14d stored flavanols showed no activity. Whilst combined Cu2+-autoclaved (+)-Catechin and -HT(+)-Catechin activities were similar, HT(+)-Catechin was more active than either freshly-made (+)-catechin (generating more H2O2) or (-)-Epicatechin (though it generated less H2O2) or 14d-(+)-Catechin (which had similar activity to Cu2+ controls - though it generated more H2O2). When combined with Cu2+, in terms of rates of activity, HT(+)-Catechin was lower than (-)-Epigallocatechin gallate and greater than freshly-made (+)-Catechin. Freshly-made and HT(+)-Catechin formed acidic complexes with Cu2+ as indicated by pH and UV-vis measurements although pH changes did not account for antimicrobial activity. Freshly-made and HT(+)-Catechin both formed Cu2+ complexes. The HT(+)-Catechin complex generated more H2O2 which could explain its higher antimicrobial activity.
Resumo:
Aims: To study the biotechnological production of lipids containing rich amounts of the medically and nutritionally important c-linolenic acid (GLA), during cultivation of the Zygomycetes Thamnidium elegans, on mixtures of glucose and xylose, abundant sugars of lignocellulosic biomass. Methods and Results: Glucose and xylose were utilized as carbon sources, solely or in mixtures, under nitrogen-limited conditions, in batch-flask or bioreactor cultures. On glucose, T. elegans produced 31.9 g/L of biomass containing 15.0 g/L lipid with significantly high GLA content (1014 mg/L). Xylose was proved to be an adequate substrate for growth and lipid production. Additionally, xylitol secretion occurred when xylose was utilized as carbon source, solely or in mixtures with glucose. Batch-bioreactor trials on glucose yielded satisfactory lipid production, with rapid substrate consumption rates. Analysis of intracellular lipids showed that the highest GLA content was observed in early stationary growth phase, while the phospholipid fraction was the most unsaturated fraction of T. elegans. Conclusions: Thamnidium elegans represents a promising fungus for the successful valorization of sugar-based lignocellulosic residues into microbial lipids of high nutritional and pharmaceutical interest.
Resumo:
The rapid development of biodiesel production technology has led to the generation of tremendous quantities of glycerol wastes, as the main by-product of the process. Stoichiometrically, it has been calculated that for every 100 kg of biodiesel, 10 kg of glycerol are produced. Based on the technology imposed by various biodiesel plants, glycerol wastes may contain numerous kinds of impurities such as methanol, salts, soaps, heavy metals and residual fatty acids. This fact often renders biodiesel-derived glycerol unprofitable for further purification. Therefore, the utilization of crude glycerol though biotechnological means represents a promising alternative for the effective management of this industrial waste. This review summarizes the effect of various impurities-contaminants that are found in biodiesel-derived crude glycerol upon its conversion by microbial strains in biotechnological processes. Insights are given concerning the technologies that are currently applied in biodiesel production, with emphasis to the impurities that are added in the composition of crude glycerol, through each step of the production process. Moreover, extensive discussion is made in relation with the impact of the nature of impurities upon the performances of prokaryotic and eukaryotic microorganisms, during crude glycerol bioconversions into a variety of high added-value metabolic products. Finally, aspects concerning ways of crude glycerol treatment for the removal of inhibitory contaminants as reported in the literature are given and comprehensively discussed
Resumo:
The DNA Checkerboard method enables the simultaneous identification of distinct microorganisms in a large number of samples and employs up to 45 whole genomic DNA probes to gram-negative and gram-positive bacterial species present in subgingival biofilms. Collectively, they account for 55%-60% of the bacteria in subgingival biofilms. In this study, we present the DNA Checkerboard hybridization as an alternative method for the detection and quantitation of Candida species in oral cavities. Our results reveal that DNA Checkerboard is sensitive enough and constitutes a powerful and appropriate method for detecting and quantifying Candida species found in the oral cavity.
Resumo:
Introduction: New reconstructive and less invasive methods have been searched to optimize bone formation and osseointegration of dental implants in maxillary sinus augmentation. Purpose: The aim of the presented ovine split-mouth study was to compare bovine bone mineral (BBM) alone and in combination with mesenchymal stem cells (MSCs) regarding their potential in sinus augmentation. Material and Methods: Bilateral sinus floor augmentations were performed in six adult sheep. BBM and MSCs were placed into the test side and only BBM in the contra-lateral control side of each sheep. Animals were sacrificed after 8 and 16 weeks. Augmentation sites were analyzed by computed tomography, histology, and histomorphometry. Results: The initial volumes of both sides were similar and did not change significantly with time. A tight connection between the particles of BBM and the new bone was observed histologically. Bone formation was significantly (p = 0.027) faster by 49% in the test sides. Conclusion: The combination of BBM and MSCs accelerated new bone formation in this model of maxillary sinus augmentation. This could allow early placement of implants.
Resumo:
Objective: To compare new bone formation in maxillary sinus augmentation procedures using biomaterial associated with mesenchymal stem cells (MSCs) separated by two different isolation methods. Background: In regenerative medicine open cell concentration systems are only allowed for clinical application under good manufacturing practice conditions. Methods: Mononuclear cells, including MSCs, were concentrated with either the synthetic poylsaccharid (FICOLL) method (classic open system-control group, n = 6 sinus) or the bone marrow aspirate concentrate (BMAC) method (closed system-test group, n = 12 sinus) and transplanted in combination with biomaterial. A sample of the cells was characterized by their ability to differentiate. After 4.1 months (SD +/- 1.0) bone biopsies were obtained and analyzed. Results: The new bone formation in the BMAC group was 19.9% (90% confidence interval [CI], 10.9-29), and in the FICOLL group was 15.5% (90% CI, 8.6-22.4). The 4.4% difference was not significant (90% CI, -4.6-13.5; p = 0.39). MSCs could be differentiated into osteogenic, chondrogenic, and adipogenic lineages. Conclusion: MSCs harvested from bone marrow aspirate in combination with bovine bone matrix particles can form lamellar bone and provide a reliable base for dental implants. The closed BMAC system is suited to substitute the open FICOLL system in bone regeneration procedures.
Resumo:
This study investigated the presence of potentially human pathogenic strains of Vibrio spp., Aeromonas spp., Escherichia coli, Salmonella spp. and Staphylococcus aureus in fish commercialized in street markets of Sao Paulo city, Brazil. Twenty fish of different species were analyzed for foodborne pathogens using conventional methods. High levels of fecal contamination were detected in 25% of samples. S. aureus was isolated from 10% of samples. All were negative for Salmonella. Vibrio species, including Vibrio cholerae non-O1/non-O139, were observed in 85% of samples although Vibrio parahaemolyticus was not found in this study. Aeromonas spp., including A. hydrophila, was isolated from 50% of fish samples. The occurrence of these pathogens suggests that the fish commercialized in Sao Paulo may represent a health risk to the consumers.
Resumo:
Forty-nine typical and atypical enteropathogenic Escherichia coli (EPEC) strains belonging to different serotypes and isolated from humans, pets (cats and dogs), farm animals (bovines, sheep, and rabbits), and wild animals (monkeys) were investigated for virulence markers and clonal similarity by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The virulence markers analyzed revealed that atypical EPEC strains isolated from animals have the potential to cause diarrhea in humans. A close clonal relationship between human and animal isolates was found by MLST and PFGE. These results indicate that these animals act as atypical EPEC reservoirs and may represent sources of infection for humans. Since humans also act as a reservoir of atypical EPEC strains, the cycle of mutual infection of atypical EPEC between animals and humans, mainly pets and their owners, cannot be ruled out since the transmission dynamics between the reservoirs are not yet clearly understood.
Resumo:
The aim of this study was to evaluate the effect of the cytoplast type and activation process on development of cloned embryos. Bovine oocytes (MII) or zygotes at the one-cell stage (IVF) were manually bisected and segregated in MII or IVF hemi-cytoplasts or hemi-karyoplasts. Adult skin cells from a bovine female were used as nucleus donors (SC). Experimental groups were composed of IVF embryos; parthenogenetic embryos; handmade cloned (HMC) embryos; and reconstructed HMC embryos using IVF hemi-cytoplast + MII hemi-cytoplast + SC (G-I); IVF hemi-cytoplast + IVF hemi-cytoplast + SC (G-II); MII hemi-cytoplast + IVF hemi-karyoplast (G-III); and IVF hemi-cytoplast + IVF hemi-karyoplast (G-IV). Embryos from G-I to G-IV were allocated to subgroups as sperm-activated (SA) or were further chemically activated (SA + CA). Embryos from all groups and subgroups were in vitro cultured in the WOW system. Blastocyst development in subgroup G-I SA (28.2%) was similar to IVF (27.0%) and HMC (31.4%) controls, perhaps due to a to a more suitable activation process and/or better complementation of cytoplasmic reprogramming factors, with the other groups and subgroups having lower levels of development. No blastocyst development was observed when using IVF hemi-karyoplasts (G-III and G-IV), possibly due to the manipulation process during a sensitive biological period. In summary, the presence of cytoplasmic factors from MII hemi-oocytes and the sperm activation process from hemi-zygotes appear to be necessary for adequate in vitro development, as only the zygote-oocyte hemi-complementation was as efficient as controls for the generation of bovine cloned blastocysts.
Resumo:
The incidence of Listeria monocytogenes in three cheese manufacturing plants from the northeastern region of Sao Paulo, Brazil, was evaluated from October 2008 to September 2009. L. monocytogenes was found in samples from two plants, at percentages of 13.3% (n = 128) and 9.6% (n = 114). Samples of raw and pasteurized milk, water, and Minas Frescal cheese were negative for L. monocyto genes, although the pathogen was isolated from the surface of Prato cheese and in brine from one of the plants evaluated. L. monocytogenes was also isolated from different sites of the facilities, mainly in non food contact surfaces such as drains, floors, and platforms. Serotype 4b was the most predominant in the plants studied. The results of this study indicate the need for control strategies to prevent the dispersion of L. monocytogenes in the environment of cheese manufacturing plants.
Resumo:
Somatic cell nuclear transfer (SCNT) has had an enormous impact on our understanding of biology and remains a unique tool for multiplying valuable laboratory and domestic animals. However, the complexity of the procedure and its poor efficiency are factors that limit a wider application of SCNT. In this context, oocyte meiotic arrest is an important option to make SCNT more flexible and increase the number of cloned embryos produced. Herein, we show that the use of butyrolactone I in association with brain-derived neurotrophic factor (BDNF) to arrest the meiotic division for 24 h prior to in vitro maturation provides bovine (Bos indicus) oocytes capable of supporting development of blastocysts and full-term cloned calves at least as efficiently as nonarrested oocytes. Furthermore, the procedure resulted in cloned blastocysts with an 1.5- and twofold increase of POU5F1 and IFNT2 expression, respectively, which are well-known markers of embryonic viability. Mitochondrial DNA (mtDNA) copy number was diminished by prematuration in immature oocytes (718,585 +/- 34,775 vs. 595,579 +/- 31,922, respectively, control and treated groups) but was unchanged in mature oocytes (522,179 +/- 45,617 vs. 498,771 +/- 33,231) and blastocysts (816,627 +/- 40,235 vs. 765,332 +/- 51,104). To our knowledge, this is the first report of cloned offspring born to prematured oocytes, indicating that meiotic arrest could have significant implications for laboratories working with SCNT and in vitro embryo production.
Resumo:
Sampling protocols for detecting Salmonella on poultry differ among various countries. In the United States, the U.S. Department of Agriculture Food Safety and Inspection Service dictates that whole broiler carcasses should be rinsed with 400 ml of 1% buffered peptone water, whereas in the European Union 25-g samples composed of neck skin from three carcasses are evaluated. The purpose of this study was to evaluate a whole carcass rinse (WCR) and a neck skin excision (NS) procedure for Salmonella and Escherichia coli isolation from the same broiler carcass. Carcasses were obtained from three broiler processing plants. The skin around the neck area was aseptically removed and bagged separately from the carcass, and microbiological analysis was performed. The corresponding carcass was bagged and a WCR sample was evaluated. No significant difference (alpha <= 0.05) in Salmonella prevalence was found between the samples processed by the two methods, but both procedures produced many false-negative Salmonella results. Prechill, 37% (66 carcasses), 28% (50 carcasses), and 51% (91 carcasses) of the 180 carcasses examined were positive for Salmonella by WCR, NS, and both procedures combined, respectively. Postchill, 3% (5 carcasses), 7% (12 carcasses), and 10% (17 carcasses) of the 177 carcasses examined were positive for Salmonella by the WCR, NS, and combination of both procedures, respectively. Prechill, E. coli plus coliform counts were 3.0 and 2.6 log CFU/ml by the WCR and NS methods, respectively. Postchill. E. coli plus coliform counts were 1.7 and 1.4 log CFU/ml by the WCR and NS methods, respectively.
Resumo:
Human respiratory syncytial virus (HRSV) is the main cause of acute lower respiratory tract infections in infants and children. Rapid diagnosis is required to permit appropriate care and treatment and to avoid unnecessary antibiotic use. Reverse transcriptase (RT-PCR) and indirect immunofluorescence assay (IFA) methods have been considered important tools for virus detection due to their high sensitivity and specificity. In order to maximize use-simplicity and minimize the risk of sample cross-contamination inherent in two-step techniques, a RT-PCR method using only a single tube to detect HRSV in clinical samples was developed. Nasopharyngeal aspirates from 226 patients with acute respiratory illness, ranging from infants to 5 years old, were collected at the University Hospital of the University of Sao Paulo (HU-USP), and tested using IFA, one-step RT-PCR, and semi-nested RT-PCR. One hundred and two (45.1%) samples were positive by at least one of the three methods, and 75 (33.2%) were positive by all methods: 92 (40.7%) were positive by one-step RT-PCR, 84 (37.2%) by IFA, and 96 (42.5%) by the semi-nested RT-PCR technique. One-step RT-PCR was shown to be fast, sensitive, and specific for RSV diagnosis, without the added inconvenience and risk of false positive results associated with semi-nested PCR. The combined use of these two methods enhances HRSV detection. (C) 2007 Elsevier B.V. All rights reserved.