922 resultados para Application specific algorithm
Resumo:
In the world we are constantly performing everyday actions. Two of these actions are frequent and of great importance: classify (sort by classes) and take decision. When we encounter problems with a relatively high degree of complexity, we tend to seek other opinions, usually from people who have some knowledge or even to the extent possible, are experts in the problem domain in question in order to help us in the decision-making process. Both the classification process as the process of decision making, we are guided by consideration of the characteristics involved in the specific problem. The characterization of a set of objects is part of the decision making process in general. In Machine Learning this classification happens through a learning algorithm and the characterization is applied to databases. The classification algorithms can be employed individually or by machine committees. The choice of the best methods to be used in the construction of a committee is a very arduous task. In this work, it will be investigated meta-learning techniques in selecting the best configuration parameters of homogeneous committees for applications in various classification problems. These parameters are: the base classifier, the architecture and the size of this architecture. We investigated nine types of inductors candidates for based classifier, two methods of generation of architecture and nine medium-sized groups for architecture. Dimensionality reduction techniques have been applied to metabases looking for improvement. Five classifiers methods are investigated as meta-learners in the process of choosing the best parameters of a homogeneous committee.
Resumo:
Web services are computational solutions designed according to the principles of Service Oriented Computing. Web services can be built upon pre-existing services available on the Internet by using composition languages. We propose a method to generate WS-BPEL processes from abstract specifications provided with high-level control-flow information. The proposed method allows the composition designer to concentrate on high-level specifi- cations, in order to increase productivity and generate specifications that are independent of specific web services. We consider service orchestrations, that is compositions where a central process coordinates all the operations of the application. The process of generating compositions is based on a rule rewriting algorithm, which has been extended to support basic control-flow information.We created a prototype of the extended refinement method and performed experiments over simple case studies
Resumo:
The Hiker Dice was a game recently proposed in a software designed by Mara Kuzmich and Leonardo Goldbarg. In the game a dice is responsible for building a trail on an n x m board. As the dice waits upon a cell on the board, it prints the side that touches the surface. The game shows the Hamiltonian Path Problem Simple Maximum Hiker Dice (Hidi-CHS) in trays Compact Nth , this problem is then characterized by looking for a Hamiltonian Path that maximize the sum of marked sides on the board. The research now related, models the problem through Graphs, and proposes two classes of solution algorithms. The first class, belonging to the exact algorithms, is formed by a backtracking algorithm planed with a return through logical rules and limiting the best found solution. The second class of algorithms is composed by metaheuristics type Evolutionary Computing, Local Ramdomized search and GRASP (Greed Randomized Adaptative Search). Three specific operators for the algorithms were created as follows: restructuring, recombination with two solutions and random greedy constructive.The exact algorithm was teste on 4x4 to 8x8 boards exhausting the possibility of higher computational treatment of cases due to the explosion in processing time. The heuristics algorithms were tested on 5x5 to 14x14 boards. According to the applied methodology for evaluation, the results acheived by the heuristics algorithms suggests a better performance for the GRASP algorithm
Resumo:
We studied the Ising model ferromagnetic as spin-1/2 and the Blume-Capel model as spin-1, > 0 on small world network, using computer simulation through the Metropolis algorithm. We calculated macroscopic quantities of the system, such as internal energy, magnetization, specific heat, magnetic susceptibility and Binder cumulant. We found for the Ising model the same result obtained by Koreans H. Hong, Beom Jun Kim and M. Y. Choi [6] and critical behavior similar Blume-Capel model
Resumo:
Multi-objective combinatorial optimization problems have peculiar characteristics that require optimization methods to adapt for this context. Since many of these problems are NP-Hard, the use of metaheuristics has grown over the last years. Particularly, many different approaches using Ant Colony Optimization (ACO) have been proposed. In this work, an ACO is proposed for the Multi-objective Shortest Path Problem, and is compared to two other optimizers found in the literature. A set of 18 instances from two distinct types of graphs are used, as well as a specific multiobjective performance assessment methodology. Initial experiments showed that the proposed algorithm is able to generate better approximation sets than the other optimizers for all instances. In the second part of this work, an experimental analysis is conducted, using several different multiobjective ACO proposals recently published and the same instances used in the first part. Results show each type of instance benefits a particular type of instance benefits a particular algorithmic approach. A new metaphor for the development of multiobjective ACOs is, then, proposed. Usually, ants share the same characteristics and only few works address multi-species approaches. This works proposes an approach where multi-species ants compete for food resources. Each specie has its own search strategy and different species do not access pheromone information of each other. As in nature, the successful ant populations are allowed to grow, whereas unsuccessful ones shrink. The approach introduced here shows to be able to inherit the behavior of strategies that are successful for different types of problems. Results of computational experiments are reported and show that the proposed approach is able to produce significantly better approximation sets than other methods
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper explores firstly the potential of a new evolutionary method - the Cross-Entropy (CE) method in solving continuous inverse electromagnetic problems. For this purpose, an adaptive updating formula for the smoothing parameter, some mutation operation, and a new termination criterion are proposed. The proposed CE based metaheuristics is applied to reduce the ripple of the magnetic levitation forces of a prototype Maglev system. The numerical results have shown that the ripple of the magnetic levitation forces of the prototype system is reduced significantly after the design optimization using the proposed algorithm.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work describes an application of a multilayer perceptron neural network technique to correct dome emission effects on longwave atmospheric radiation measurements carried out using an Eppley Precision Infrared Radiometer (PIR) pyrgeometer. It is shown that approximately 7-month-long measurements of dome and case temperatures and meteorological variables available in regular surface stations (global solar radiation, air temperature, and air relative humidity) are enough to train the neural network algorithm and correct the observed longwave radiation for dome temperature effects in surface stations with climates similar to that of the city of São Paulo, Brazil. The network was trained using data from 15 October 2003 to 7 January 2004 and verified using data, not present during the network-training period, from 8 January to 30 April 2004. The longwave radiation values generated by the neural network technique were very similar to the values obtained by Fairall et al., assumed here as the reference approach to correct dome emission effects in PIR pyrgeometers. Compared to the empirical approach the neural network technique is less limited to sensor type and time of day (allows nighttime corrections).
Resumo:
The accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better Suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0degreesC, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.
Resumo:
Two applications of the modified Chebyshev algorithm are considered. The first application deals with the generation of orthogonal polynomials associated with a weight function having singularities on or near the end points of the interval of orthogonality. The other application involves the generation of real Szego polynomials.
Resumo:
An algorithm is presented that finds the optimal plan long-term transmission for till cases studied, including relatively large and complex networks. The knowledge of optimal plans is becoming more important in the emerging competitive environment, to which the correct economic signals have to be sent to all participants. The paper presents a new specialised branch-and-bound algorithm for transmission network expansion planning. Optimality is obtained at a cost, however: that is the use of a transportation model for representing the transmission network, in this model only the Kirchhoff current law is taken into account (the second law being relaxed). The expansion problem then becomes an integer linear program (ILP) which is solved by the proposed branch-and-bound method without any further approximations. To control combinatorial explosion the branch- and bound algorithm is specialised using specific knowledge about the problem for both the selection of candidate problems and the selection of the next variable to be used for branching. Special constraints are also used to reduce the gap between the optimal integer solution (ILP program) and the solution obtained by relaxing the integrality constraints (LP program). Tests have been performed with small, medium and large networks available in the literature.
Resumo:
The application process of fluid fertilizers through variable rates implemented by classical techniques with feedback and conventional equipments can be inefficient or unstable. This paper proposes an open-loop control system based on artificial neural network of the type multilayer perceptron for the identification and control of the fertilizer flow rate. The network training is made by the algorithm of Levenberg-Marquardt with training data obtained from measurements. Preliminary results indicate a fast, stable and low cost control system for precision fanning. Copyright (C) 2000 IFAC.