978 resultados para Antigens, CD8


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NK cell self-tolerance is maintained by inhibitory receptors specific for MHC class I molecules. Inhibitory NK receptors are also expressed on memory CD8 T cells but their biological relevance on T cells is unclear. In this study, we describe the expression of the Ly49A receptor on a subset of autoreactive T cells which persist in mice double-transgenic for the lymphocytic choriomeningitis virus-derived peptide gp33 and a TCRalphabeta specific for the gp33. No Ly49A-expressing cells are found in TCRalphabeta single-transgenic mice, indicating that the presence of the autoantigen is required for Ly49A induction. Direct evidence for an Ag-specific initiation of Ly49A expression has been obtained in vitro after stimulation of autoreactive TCRalphabeta T cells with the cognate self-Ag. This expression of Ly49A substantially reduces Ag-specific activation of autoreactive T cells. These findings thus suggest that autoantigen-specific induction of inhibitory NK cell receptors on T cells may contribute to peripheral self-tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD8+ cytotoxic T lymphocyte (CTL) can recognize and kill target cells that express only a few cognate major histocompatibility complex class I-peptide (pMHC) complexes. To better understand the molecular basis of this sensitive recognition process, we studied dimeric pMHC complexes containing linkers of different lengths. Although dimers containing short (10-30-A) linkers efficiently bound to and triggered intracellular calcium mobilization and phosphorylation in cloned CTL, dimers containing long linkers (> or = 80 A) did not. Based on this and on fluorescence resonance energy transfer experiments, we describe a dimeric binding mode in which two T cell receptors engage in an anti-parallel fashion two pMHC complexes facing each other with their constant domains. This binding mode allows integration of diverse low affinity interactions, which increases the overall binding and, hence, the sensitivity of antigen recognition. In proof of this, we demonstrated that pMHC dimers containing one agonist and one null ligand efficiently activate CTL, corroborating the importance of endogenous pMHC complexes in antigen recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large numbers and functionally competent T cells are required to protect from diseases for which antibody-based vaccines have consistently failed (1), which is the case for many chronic viral infections and solid tumors. Therefore, therapeutic vaccines aim at the induction of strong antigen-specific T-cell responses. Novel adjuvants have considerably improved the capacity of synthetic vaccines to activate T cells, but more research is necessary to identify optimal compositions of potent vaccine formulations. Consequently, there is a great need to develop accurate methods for the efficient identification of antigen-specific T cells and the assessment of their functional characteristics directly ex vivo. In this regard, hundreds of clinical vaccination trials have been implemented during the last 15 years, and monitoring techniques become more and more standardized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME POUR UN LARGE PUBLIC Parmi les globules blancs, les lymphocytes T 004 jouent un rôle primordial dans la coordination de la réponse immunitaire contre les pathogènes et les lymphocytes T CD8 dans leur élimination. Lors d'une infection par le virus de l'immunodéficience humaine (VIH-1), non seulement les cellules T CD4 sont les principales cibles d'infections, mais aussi elles disparaissent progressivement tout au long de la maladie. Ce phénomène, appelé aussi épuisement des lymphocytes T CD4, est la principale cause provoquant le Syndrome d'Immunodéficience Acquise (SIDA). Malgré de grands efforts de recherche, nous ne sommes toujours pas en mesure de dire si ce phénomène est dû à un défaut dans la production de nouvelles cellules ou à une destruction massive de cellules en circulation. Dans cette étude, nous nous proposions, dans un premier temps, de comparer la production de nouvelles cellules T CD4 et CD8 chez des individus VIH-négatifs et positifs. Les cellules nouvellement produites portent un marqueur commun que l'on appelle TREC et qui est facilement mesurable. En considérant des paramètres cliniques, nous étions en mesure de déterminer le niveau de TRECs de cellules T CD4 et CD8 dans différentes phases de la maladie. De là, nous avons pu déterminer que le niveau de TREC est toujours plus bas dans les cellules T CD8 de patients VIH-positifs comparativement à notre groupe contrôle. Nous avons pu déterminer par une analyse ultérieure que cette différence est due à une forte prolifération de ces cellules chez les patients VIH-positifs, ce qui a pour effet de diluer ce marqueur. En revanche, la production de nouvelles cellules T CD4 chez des patients VIH-positifs est accentuée lors de la phase précoce de la maladie et largement réprimée lors de la phase tardive. Dans un second temps, nous avons effectué une analyse à grande échelle de l'expression de gènes associés à la division cellulaire sur des lymphocytes T CD4 et CD8 d'individus VIH-¬positifs et négatifs, avec comme contrôle des cellules proliférant in vitro. De cette étude, nous avons pu conclure que les cellules T CD8 de patients VIH-positifs étaient en état de prolifération, alors que les lymphocytes T CD4 présentaient des défauts majeurs conduisant à un arrêt de la division cellulaire. Nos résultats montrent que la capacité à produire de nouvelles cellules chez des patients VIH¬positifs reste active longtemps pendant la maladie, mais que l'incapacité des cellules T CD4 à proliférer peut enrayer la reconstitution immunitaire chez ces individus. ABSTRACT The hallmark of HIV-1 infection is the depletion of CD4 T cells. Despite extensive investigation, the mechanisms responsible for the loss of CD4 T cells have been elucidated only partially. In particular, it remains controversial whether CD4 T cell depletion results from a defect in T cell production or from a massive peripheral destruction. In this study, de novo T cell generation has been investigated by measuring T cell receptor rearrangement excision circles (TRECs) on large cohorts of HIV-negative (N=120) and HIV-1 infected (N=298) individuals. Analysis of TREC levels was performed in HIV-infected subjects stratified by the stage of HIV disease based on CD4 T cell counts (early: >500 CD4 T cells/µl; intermediate: <500>200; late: <200) and by age (20 to 60 years, n = 259). Our data show that TREC levels in CD8 T cells were significantly lower in HIV-infected subjects at any stage of disease compared to the control group. In contrast, TREC levels in CD4 T cells were significantly higher in HIV-infected subjects at early stages disease while no significant differences were observed at intermediate stages of the disease and were severely reduced only at late stages of disease. To investigate further the status of cell cycle in peripheral CD4 and CD8 T cells in HIV-1 infections, we determined the pattern of gene expression with the microarray technology. In particular, CD4 and CD8 T cells of HIV-1 infected and HIV-negative subjects were analysed by Cell Cycle cDNA expression array. The patterns of gene expression were compared to in vitro stimulated CD4 and CD8 T cells and this analysis showed that CD8 T cells of HIV-1 infected subjects had a pattern of gene expression very similar to that of in vitro stimulated CD8 T cells thus indicating ongoing cell cycling. In contrast, CD4 T cells of HIV-1 infected subjects displayed a complex pattern of gene expression. In fact, CD4 T cells expressed high levels of genes typically associated with cell activation, but low levels of cell cycle genes. Therefore, these results indicated that activated CD4 T cells of HIV-1 infected subjects were in cell cycle arrest. Taking together these results indicate that thymus function is preserved for long time during HIV- 1 infection and the increase observed in early stage disease may represent a compensatory mechanism to the depletion of CD4 T cells. However, we provide evidence for a cell cycle arrest of peripheral CD4 T cells that may prevent potentially the replenishment of CD4 T cells. RESUME Les mécanismes responsables de la perte des lymphocytes T CD4 lors de l'infection pas VIH n'ont été élucidés que partiellement. Nous ne savons toujours pas si l'épuisement des lymphocytes T CD4 résulte d'un défaut dans la production de cellules ou d'une destruction périphérique massive. Dans cette étude, la production de cellules T a été étudiée en mesurant les cercles d'excision générés lors du réarrangement du récepteur au cellules T (TRECs) chez des individus VIH-négatifs (N=120) et VIH-1 positifs (N=298). L'analyse des niveaux de TREC a été faite chez sujets HIV-infectés en considérant les phases de la maladie sur la base des comptes CD4 (phase précoce: > 500 cellules CD4/µl; intermédiaire: < 500>200; tardive: < 200) et par âge. Nos données démontrent que les niveaux de TRECs des cellules T CD8 étaient significativement plus bas chez les sujets VIH-1 infectés, à tous les stades de la maladie comparativement au groupe contrôle. En revanche, les niveaux de TRECs des cellules T CD4 étaient significativement plus élevés chez les sujets VIH-1 infectés durant la phase précoce de la maladie, tandis qu'aucune différence significative n'était observée durant la phase intermédiaire et étaient très réduits dans la phase tardive. Dans une deuxième partie, nous avons utilisé la technique des biopuces à d'ADN complémentaire pour analyser la régulation du cycle cellulaire chez les lymphocytes T CD4 et CD8 périphériques lors d'une infection au VIH-1. Des profils d'expression ont été déterminés et comparés à ceux de cellules T CD4 et CD8 stimulées in vitro, démontrant que les cellules T CD8 des sujets VIH-positifs avaient un profil d'expression très semblable à celui des cellules stimulées in vitro en prolifération. En revanche, les lymphocytes T CD4 des sujets VIH-1 positifs avaient un profil d'expression de gène plus complexe. En fait, leur profil montrait une sur- expression de gènes associés à une activation cellulaire, mais une sous-expression de ceux induisant une division. Ainsi, ces résultats indiquent que les lymphocytes T CD4 d'individus VIH-positifs présentent des dérégulations qui conduisent à un arrêt du cycle cellulaire. Ces résultats montrent que la fonction thymique est préservée longtemps pendant l'infection au VIH-1 et que l'augmentation de la quantité de TRECs dans la phase précoce de la maladie peut représenter un mécanisme compensatoire à l'épuisement des cellules T CD4. Cependant, nous démontrons aussi un clair dysfonctionnement du cycle cellulaire chez les cellules T CD4 d'individus infectés par VIH-1 ce qui peut enrayer la reconstitution du système immunitaire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal vaccine strategies must be identified for improving T-cell vaccination against infectious and malignant diseases. MelQbG10 is a virus-like nano-particle loaded with A-type CpG-oligonucleotides (CpG-ODN) and coupled to peptide(16-35) derived from Melan-A/MART-1. In this phase IIa clinical study, four groups of stage III-IV melanoma patients were vaccinated with MelQbG10, given (i) with IFA (Montanide) s.c.; (ii) with IFA s.c. and topical Imiquimod; (iii) i.d. with topical Imiquimod; or (iv) as intralymph node injection. In total, 16/21 (76%) patients generated ex vivo detectable Melan-A/MART-1-specific T-cell responses. T-cell frequencies were significantly higher when IFA was used as adjuvant, resulting in detectable T-cell responses in all (11/11) patients, with predominant generation of effector-memory-phenotype cells. In turn, Imiquimod induced higher proportions of central-memory-phenotype cells and increased percentages of CD127(+) (IL-7R) T cells. Direct injection of MelQbG10 into lymph nodes resulted in lower T-cell frequencies, associated with lower proportions of memory and effector-phenotype T cells. Swelling of vaccine site draining lymph nodes, and increased glucose uptake at PET/CT was observed in 13/15 (87%) of evaluable patients, reflecting vaccine triggered immune reactions in lymph nodes. We conclude that the simultaneous use of both Imiquimod and CpG-ODN induced combined memory and effector CD8(+) T-cell responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Initial non-inflammatory demyelination in canine distemper virus infection (CDV) develops against a background of severe immunosuppression and is therefore, thought to be virus-induced. However, recently we found a marked invasion of T cells throughout the central nervous system (CNS) in dogs with acute distemper despite drastic damage to the immune system. In the present study, this apparent paradox was further investigated by immunophenotyping of lymphocytes, following experimental CDV challenge in vaccinated and non-vaccinated dogs. In contrast to CDV infected, unprotected dogs, vaccinated dogs did not become immunosuppressed and exhibited a strong antiviral immune response following challenge with virulent CDV. In unprotected dogs rapid and drastic lymphopenia was initially due to depletion of T cells. In peripheral blood, CD4(+) T cells were more sensitive and depleted earlier and for a longer time than CD8(+) cells which recovered soon. In the cerebrospinal fluid (CSF) we could observe an increase in the T cell to B cell and CD8(+) to CD4(+) ratios. Thus, partial protection of the CD8(+) cell population could explain why part of the immune function in acute distemper is preserved. As found earlier, T cells invaded the CNS parenchyma in these dogs but also in the protected challenged dogs, which did not develop any CNS disease at all. Since markers of T cell activation were upregulated in both groups of animals, this phenomenon could in part be related to non-specific penetration of activated T cells through the blood brain barrier. However, in diseased animals much larger numbers of T cells were found in the CNS than in the protected dogs, suggesting that massive invasion of T cells in the brain requires CDV expression in the CNS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thymic stromal lymphopoietin (TSLP) is a mucosal tissue-associated cytokine that has been widely studied in the context of T helper type 2 (Th2)-driven inflammatory disorders. Although TSLP is also produced upon viral infection in vitro, the role of TSLP in antiviral immunity is unknown. In this study we report a novel role for TSLP in promoting viral clearance and virus-specific CD8+ T-cell responses during influenza A infection. Comparing the immune responses of wild-type and TSLP receptor (TSLPR)-deficient mice, we show that TSLP was required for the expansion and activation of virus-specific effector CD8+ T cells in the lung, but not the lymph node. The mechanism involved TSLPR signaling on newly recruited CD11b+ inflammatory dendritic cells (DCs) that acted to enhance interleukin-15 production and expression of the costimulatory molecule CD70. Taken together, these data highlight the pleiotropic activities of TSLP and provide evidence for its beneficial role in antiviral immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mice, vaccination with high peptide doses generates higher frequencies of specific CD8+ T cells, but with lower avidity compared to vaccination with lower peptide doses. To investigate the impact of peptide dose on CD8+ T cell responses in humans, melanoma patients were vaccinated with 0.1 or 0.5 mg Melan-A/MART-1 peptide, mixed with CpG 7909 and Incomplete Freund's adjuvant. Neither the kinetics nor the amplitude of the Melan-A-specific CD8+ T cell responses differed between the two vaccination groups. Also, CD8+ T cell differentiation and cytokine production ex vivo were similar in the two groups. Interestingly, after low peptide dose vaccination, Melan-A-specific CD8+ T cells showed enhanced degranulation upon peptide stimulation, as assessed by CD107a upregulation and perforin release ex vivo. In accordance, CD8+ T cell clones derived from low peptide dose-vaccinated patients showed significantly increased degranulation and stronger cytotoxicity. In parallel, Melan-A-specific CD8+ T cells and clones from low peptide dose-vaccinated patients expressed lower CD8 levels, despite similar or even stronger binding to tetramers. Furthermore, CD8+ T cell clones from low peptide dose-vaccinated patients bound CD8 binding-deficient tetramers more efficiently, suggesting that they may express higher affinity TCRs. We conclude that low peptide dose vaccination generated CD8+ T cell responses with stronger cytotoxicity and lower CD8 dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HLA-DR antigens are polymorphic cell surface glycoproteins, expressed primarily in B lymphocytes and macrophages, which are thought to play an important role in the immune response. Two polypeptide chains, alpha and beta, are associated at the cell surface, and a third chain associates with alpha and beta intracellularly. RNA isolated from the human B-cell line Raji was injected in Xenopus laevis oocytes. Immunoprecipitates of translation products with several monoclonal antibodies revealed the presence of HLA-DR antigens similar to those synthesized in Raji cells. One monoclonal antibody was able to bind the beta chain after dissociation of the three polypeptide chains with detergent. The presence of all three chains was confirmed by two-dimensional gel electrophoresis. The glycosylation pattern of the three chains was identical to that observed in vivo, as evidenced in studies using tunicamycin, an inhibitor of N-linked glycosylation. The presence of alpha chains assembled with beta chains in equimolar ratio was further demonstrated by amino-terminal sequencing. An RNA fraction enriched for the three mRNAs, encoding alpha, beta, and intracellular chains, was isolated. This translation-assembly system and the availability of monoclonal antibodies make it possible to assay for mRNA encoding specific molecules among the multiple human Ia-like antigens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mouse mammary tumor virus has developed strategies to exploit the immune response. It requires vigorous immune stimulation to achieve efficient infection. The infected antigen-presenting cells present a viral superantigen on the cell surface which stimulates strong CD4-mediated T-cell help but CD8 T-cell responses are undetectable. Despite the high frequency of superantigen-reactive T cells, the superantigen-induced immune response is comparable to classical antigen responses in terms of T-cell priming, T-cell-B-cell collaboration as well as follicular and extra-follicular B-cell differentiation. Induction of systemic anergy is observed, similar to classical antigen responses where antigen is administered systemically but does not influence the role of the superantigen-reactive T cells in the maintenance of the chronic germinal center reaction. So far we have been unable to detect a cytotoxic T-cell response to mouse mammary tumor virus peptide antigens or to the superantigen. This might yet represent another step in the viral infection strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently described 95 predicted alpha-helical coiled-coil peptides derived from putative Plasmodium falciparum erythrocytic stage proteins. Seventy peptides recognized with the highest level of prevalence by sera from three endemic areas were selected for further studies. In this study, we sequentially examined antibody responses to these synthetic peptides in two cohorts of children at risk of clinical malaria in Kilifi district in coastal Kenya, in order to characterize the level of peptide recognition by age, and the role of anti-peptide antibodies in protection from clinical malaria. Antibody levels from 268 children in the first cohort (Chonyi) were assayed against 70 peptides. Thirty-nine peptides were selected for further study in a second cohort (Junju). The rationale for the second cohort was to confirm those peptides identified as protective in the first cohort. The Junju cohort comprised of children aged 1-6 years old (inclusive). Children were actively followed up to identify episodes of febrile malaria in both cohorts. Of the 70 peptides examined, 32 showed significantly (p<0.05) increased antibody recognition in older children and 40 showed significantly increased antibody recognition in parasitaemic children. Ten peptides were associated with a significantly reduced odds ratio (OR) for an episode of clinical malaria in the first cohort of children and two of these peptides (LR146 and AS202.11) were associated with a significantly reduced OR in both cohorts. LR146 is derived from hypothetical protein PFB0145c in PlasmoDB. Previous work has identified this protein as a target of antibodies effective in antibody dependent cellular inhibition (ADCI). The current study substantiates further the potential of protein PFB0145c and also identifies protein PF11_0424 as another likely target of protective antibodies against P. falciparum malaria

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cells move randomly ("random-walk"), a characteristic thought to be integral to their function. Using migration assays and time-lapse microscopy, we found that CD8+ T cells lacking the lymph node homing receptors CCR7 and CD62L migrate more efficiently in transwell assays, and that these same cells are characterized by a high frequency of cells exhibiting random crawling activity under culture conditions mimicking the interstitial/extravascular milieu, but not when examined on endothelial cells. To assess the energy efficiency of cells crawling at a high frequency, we measured mRNA expression of genes key to mitochondrial energy metabolism (peroxisome proliferator-activated receptor gamma coactivator 1beta [PGC-1beta], estrogen-related receptor alpha [ERRalpha], cytochrome C, ATP synthase, and the uncoupling proteins [UCPs] UCP-2 and -3), quantified ATP contents, and performed calorimetric analyses. Together these assays indicated a high energy efficiency of the high crawling frequency CD8+ T-cell population, and identified differentially regulated heat production among nonlymphoid versus lymphoid homing CD8+ T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In HLA-A2 individuals, the CD8 T cell response against the differentiation Ag Melan-A is mainly directed toward the peptide Melan-A26-35. The murine Melan-A24-33 sequence encodes a peptide that is identical with the human Melan-A26-35 decamer, except for a Thr-to-Ile substitution at the penultimate position. Here, we show that the murine Melan-A24-33 is naturally processed and presented by HLA-A2 molecules. Based on these findings, we compared the CD8 T cell response to human and murine Melan-A peptide by immunizing HLA-A2 transgenic mice. Even though the magnitude of the CTL response elicited by the murine Melan-A peptide was lower than the one elicited by the human Melan-A peptide, both populations of CTL recognized the corresponding immunizing peptide with the same functional avidity. Interestingly, CTL specific for the murine Melan-A peptide were completely cross-reactive against the orthologous human peptide, whereas anti-human Melan-A CTL recognized the murine Melan-A peptide with lower avidity. Structurally, this discrepancy could be explained by the fact that Ile32 of murine Melan-A24-33 created a larger TCR contact area than Thr34 of human Melan-A26-35. These data indicate that, even if immunizations with orthologous peptides can induce strong specific T cell responses, the quality of this response against syngeneic targets might be suboptimal due to the structure of the peptide-TCR contact surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DCs) are the most efficient antigen presenting cells, they provide co-stimulation, are able to secrete various proinflammatory cytokines and therefore play a pivotal role in shaping adaptive immune responses. Moreover, they are important for the promotion and maintenance of central and peripheral tolerance through several mechanisms like the induction of anergy or apoptosis in effector T cells or by promoting regulatory T cells. The murine CD8α+ (MuTu) dendritic cell line was previously derived and described in our laboratory. The MuTu cell line has been shown to maintain phenotypical and functional characteristics of endogenous CD8α+ DCs. They are able to cross-present exogenous antigens to CD8+ T cells and produce interleukin (IL-) 12 upon engagement of Toll like receptors. The cell line constitutes an infinite source of homogenous, phenotypically well-defined dendritic cells. This allows us to investigate the role and potential of specific molecules in the induction as well as regulation of immune responses by DCs in a rational and standardized way. In a first project the MuTu dendritic cell line was transduced in order to stably express the immunosuppressive molecules IL-10, IL-35 or the active form of TGF-β (termed IL-10+DC, IL-35+DC or actTGFβ+DC). We investigated the capability of these potentially suppressive or tolerogenic dendritic cell lines to induce immune tolerance and explore the mechanisms behind tolerance induction. The expression of TGF-β by the DC line did not affect the phenotype of the DCs itself. In contrast, IL-10+ and IL-35+DCs were found to exhibit lower expression of co-stimulatory molecules and MHC class I and II, as well as reduced secretion of pro-inflammatory cytokines upon activation. In vitro co-culture with IL-35+, IL10+ or active TGFβ+ DCs interfered with function and proliferation of CD4+ and CD8+ T cells. Furthermore, IL-35 and active TGF-β expressing DC lines induced regulatory phenotype on CD4+ T cells in vitro without or with expression of Foxp3, respectively. In different murine cancer models, vaccination with IL-35 or active TGF-β expressing DCs resulted in faster tumor growth. Interestingly, accelerated tumor growth could be observed when IL-35-expressing DCs were injected into T cell-deficient RAG-/- mice. IL-10expressing DCs however, were found to rather delay tumor growth. Besides the mentioned autocrine effects of IL-35 expression on the DC line itself, we surprisingly observed that the expression of IL-35 or the addition of IL-35 containing medium enhances neutrophil survival and induces proliferation of endothelial cells. Our findings indicate that the cytokine IL-35 might not only be a potent regulator of adaptive immune responses, but it also implies IL-35 to mediate diverse effects on an array of cellular targets. This abilities make IL-35 a promising target molecule not only for the treatment of auto-inflammatory disease but also to improve anti-cancer immunotherapies. Indeed, by applying active TGFβ+ in murine autoimmune encephalitis we were able to completely inhibit the development of the disease, whereas IL-35+DCs reduced disease incidence and severity. Furthermore, the preventive transfer of IL-35+DCs delayed rejection of transplanted skin to the same extend as the combination of IL-10/actTGF-β expressing DCs. Thus, the expression of a single tolerogenic molecule can be sufficient to interfere with the adequate activation and function of dendritic cells and of co-cultured T lymphocytes. The respective mechanisms of tolerance induction seem to be different for each of the investigated molecule. The application of a combination of multiple tolerogenic molecules might therefore evoke synergistic effects in order to overcome (auto-) immunity. In a second project we tried to improve the immunogenicity of dendritic cell-based cancer vaccines using two different approaches. First, the C57BL/6 derived MuTu dendritic cell line was genetically modified in order to express the MHC class I molecule H-2Kd. We hypothesized that the expression of BALB/c specific MHC class I haplotype (H-2Kd) should allow the priming of tumor-specific CD8+ T cells by the otherwise allogeneic dendritic cells. At the same time, the transfer of these H-2Kd+ DCs into BALB/c mice was thought to evoke a strong inflammatory environment that might act as an "adjuvant", helping to overcome tumor induced immune suppression. Using this so called "semi-allogeneic" vaccination approach, we could demonstrate that the delivery of tumor lysate pulsed H-2Kd+ DCs significantly delayed tumor growth when compared to autologous or allogeneic vaccination. However, we were not able to coherently elucidate the cellular mechanisms underlying the observed effect. Second, we generated MuTu DC lines which stably express the pro-inflammatory cytokines IL-2, IL-12 or IL-15. We investigated whether the combination of DC vaccination and local delivery of pro-inflammatory cytokines might enhance tumor specific T cell responses. Indeed, we observed an enhanced T cell proliferation and activation when they were cocultured in vitro with IL-12 or IL-2-expressing DCs. But unfortunately we could not observe a beneficial or even synergistic impact on tumor development when cytokine delivery was combined with semi-allogeneic DC vaccination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient and persisting immune memory is essential for long-term protection from infectious and malignant diseases. The yellow fever (YF) vaccine is a live attenuated virus that mediates lifelong protection, with recent studies showing that the CD8(+) T cell response is particularly robust. Yet, limited data exist regarding the long-term CD8(+) T cell response, with no studies beyond 5 years after vaccination. We investigated 41 vaccinees, spanning 0.27 to 35 years after vaccination. YF-specific CD8(+) T cells were readily detected in almost all donors (38 of 41), with frequencies decreasing with time. As previously described, effector cells dominated the response early after vaccination. We detected a population of naïve-like YF-specific CD8(+) T cells that was stably maintained for more than 25 years and was capable of self-renewal ex vivo. In-depth analyses of markers and genome-wide mRNA profiling showed that naïve-like YF-specific CD8(+) T cells in vaccinees (i) were distinct from genuine naïve cells in unvaccinated donors, (ii) resembled the recently described stem cell-like memory subset (Tscm), and (iii) among all differentiated subsets, had profiles closest to naïve cells. Our findings reveal that CD8(+) Tscm are efficiently induced by a vaccine in humans, persist for decades, and preserve a naïveness-like profile. These data support YF vaccination as an optimal mechanistic model for the study of long-lasting memory CD8(+) T cells in humans.