979 resultados para Ammonia beccarii dextral
Resumo:
Bulk single crystals of GaN and AlN can be grown from supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. In this process, a mineralizer such as amide, imide or nitride is used to attack a bulk nitride feedstock at temperatures from 200°C to 500°C and pressures from 1 to 4 kbar. Ammonothermal systems have been modeled here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the fluid flow is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of particle size on flow pattern and temperature distribution in an autoclave are analyzed.
Resumo:
Efforts have been made in growing bulk single crystals of GaN front supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. Different mineralizers such as amide or azide and temperatures in the range of 200-600degreesC have been used to increase the solubility. The pressure is from 1 to 4 kbar. Modeling of the ammonothermal growth process has been used to identify factors which may affect the temperature distribution, fluid flow and nutrient transport. The GaN charge is considered as a porous media bed and the flow in the charge is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of baffle design and opening on flow pattern and temperature distribution in an autoclave are analyzed. Two cases are considered with baffle openings of 15% and 20% in cross-sectional area, respectively.
Depletion of the heaviest stable N isotope is associated with NH4 +/NH3 toxicity in NH4 +-fed plants
Resumo:
Background: In plants, nitrate (NO(3)(-)) nutrition gives rise to a natural N isotopic signature (delta(15)N), which correlates with the delta(15)N of the N source. However, little is known about the relationship between the delta(15)N of the N source and the (14)N/(15)N fractionation in plants under ammonium (NH(4)(+)) nutrition. When NH(4)(+) is the major N source, the two forms, NH(4)(+) and NH(3), are present in the nutrient solution. There is a 1.025 thermodynamic isotope effect between NH(3) (g) and NH(4)(+)(aq) which drives to a different delta(15)N. Nine plant species with different NH(4)(+)-sensitivities were cultured hydroponically with NO(3)(-) or NH(4)(+) as the sole N sources, and plant growth and delta(15)N were determined. Short-term NH(4)(+)/NH(3) uptake experiments at pH 6.0 and 9.0 (which favours NH(3) form) were carried out in order to support and substantiate our hypothesis. N source fractionation throughout the whole plant was interpreted on the basis of the relative transport of NH(4)(+) and NH(3). -- Results: Several NO(3)(-)-fed plants were consistently enriched in (15)N, whereas plants under NH(4)(+) nutrition were depleted of (15)N. It was shown that more sensitive plants to NH(4)(+) toxicity were the most depleted in (15)N. In parallel, N-deficient pea and spinach plants fed with (15)NH(4)(+) showed an increased level of NH(3) uptake at alkaline pH that was related to the (15)N depletion of the plant. Tolerant to NH(4)(+) pea plants or sensitive spinach plants showed similar trend on (15)N depletion while slight differences in the time kinetics were observed during the initial stages. The use of RbNO(3) as control discarded that the differences observed arise from pH detrimental effects. -- Conclusions: This article proposes that the negative values of delta(15)N in NH(4)(+)-fed plants are originated from NH(3) uptake by plants. Moreover, this depletion of the heavier N isotope is proportional to the NH(4)(+)/NH(3) toxicity in plants species. Therefore, we hypothesise that the low affinity transport system for NH(4)(+) may have two components: one that transports N in the molecular form and is associated with fractionation and another that transports N in the ionic form and is not associated with fractionation.
Resumo:
Hygrophila ( Hygrophila polysperma (Roxb.) T. Anderson) is a plants which forms serious aquatic weed problems. Both submerged and emergent growth forms occur. Nutritional studies with a controlled release fertilizer and sediments collected from hygrophila-infested areas were conducted with the emergent growth habit to provide insights into growth of this introduced plant. Plant dry weights for experimental 16- week culture periods with low average temperatures were associated with low amounts of hygrophila biomass as compared to culture periods with high average temperatures. Hygrophila cultured in sand rooting media with the controlled release fertilizer produced as much as 20 times more dry weight than plants cultured in sediments only. First-degree linear regression statistics showed hygrophila dry weights were highly related to ammonia nitrogen, magnesium, sodium, and pH values in the sediments. These findings show the close relationship of the emergent growth habit of hygrophila to sediment nutrients. Analyses for certain sediment characteristics may provide an indication of the potential growth that may be expected for weed infestations of this plant. Hygrophila grows year round in south Florida; however, visual observations of canals and other bodies of water indicate that lower amounts of hygrophila plants occur during the cooler months of year than during the summer season. These findings show the seasonal growth of emergent hygrophila occurs with biomass dependent on both sediment nutrients and temperature.
Resumo:
During October, 1972 the Patuxent River Estuary was monitored intensively and synoptically over two tidal cycles to determine the spatial and temporal patterns of various hydrodynamic, chemical and biological features. Forty-one depths at eleven stations along nine transects were sampled simultaneously at hourly intervals for salinity, temperature, dissolved oxygen, chlorohyll a, particulate nitrogen, nitrate, nitrite, total kjeldahl nitrogen, ammonia, particulate carbohydrate, dissolved organic carbon, total hydrolizable phosphorous, dissolved inorganic phosphorous, suspended sediment, particle size distribution, and zooplankton. Tidal velocity was continuously monitored at each depth by recording current meters. Riverine input and meteorological conditions were relatively stable for two weeks preceeding the deployment. This communication describes the calculation of the intrinsic rates of change of the observed variables from their measured distributions in the Estuary. The steady-state, one-dimensional equation of species continuity is employed to separate the advection and tidal dispersion of a hydrodynamically passive substance frbm its intrinsic rate of change at point. A new spatial transform is introduced for the purpose of interpolation and extrapolation of data.The intrinsic rate of change profiles reveal a region of heavy bloom activity in the upper estuary and a secondary bloom near the point in the River that most of the suspended material settles out. The changes in ammonia and nitrates are highly correlated to the productivity patterns. Phosphorous rates are less closely correlated to productivity. The perturbations that the Chalk Point steam electric power plant have on the heat and oxygen balances are easily discernible.
Resumo:
GaN can be used to fabricate blue/green/UV LEDs and high temperature, high power electronic devices. Ideal substrates are needed for high quality III-nitride epitaxy, which is an essential step for the manufacture of LEDs. GaN substrates are ideal to be lattice matched and isomorphic to nitride-based films. Bulk single crystals of GaN can be grown from supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. In this process, a mineralizer such as amide, imide or azide is used to attack a bulk nitride feedstock at temperatures from 200 - 500癈 and pressures from 1 - 4 kbar. Baffle design is essential for successful growth of GaN crystals. Baffle is used to separate the dissolving zone from the growth zone, and to maintain a temperature difference between the two zones. For solubility curve with a positive coefficient with respect to temperature, the growth zone is maintained at a lower temperature than that in the dissolving zone, thus the nutrient becomes supersaturated in the growth zone. The baffle opening is used to control the mixing of nutrients in the two zones, thus the transfer of nutrient from the lower part to the upper part. Ammonothermal systems have been modeled here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the flow is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. We investigated the effects of baffle opening and position on the transport phenomena of nutrient from dissolving zone to the growth zone. Simulation data have been compared qualitatively with experimental data.
Resumo:
The toxicity of sediments in Biscayne Bay and many adjoining tributaries was determined as part of a bioeffects assessments program managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. The survey was designed to characterize sediment quality throughout the greater Biscayne Bay area. Surficial sediment samples were collected during 1995 and 1996 from 226 randomly-chosen locations throughout nine major regions. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts; and reduced reproductive success in marine copepods exposed to solid-phase sediments. Contamination and toxicity were most severe in several peripheral canals and tributaries, including the lower Miami River, adjoining the main axis of the bay. In the open basins of the bay, chemical concentrations and toxicity generally were higher in areas north of the Rickenbacker Causeway than south of it. Sediments from the main basins of the bay generally were less toxic than those from the adjoining tributaries and canals. The different toxicity tests, however, indicated differences in severity, incidence, spatial patterns, and spatial extent in toxicity. The most sensitive test among those performed on all samples, a bioassay of normal morphological development of sea urchin embryos, indicated toxicity was pervasive throughout the entire study area. The least sensitive test, an acute bioassay performed with a benthic amphipod, indicated toxicity was restricted to a very small percentage of the area. Both the degree and spatial extent of chemical contamination and toxicity in this study area were similar to or less severe than those observed in many other areas in the U.S. The spatial extent of toxicity in all four tests performed throughout the bay were comparable to the “national averages” calculated by NOAA from previous surveys conducted in a similar manner. Several trace metals occurred in concentrations in excess of those expected in reference sediments. Mixtures of substances, including pesticides, petroleum constituents, trace metals, and ammonia, were associated statistically with the measures of toxicity. Substances most elevated in concentration relative to numerical guidelines and associated with toxicity included polychlorinated biphenyls, DDT pesticides, polynuclear aromatic hydrocarbons, hexachloro cyclohexanes, lead, and mercury. These (and other) substances occurred in concentrations greater than effects-based guidelines in the samples that were most toxic in one or more of the tests. (PDF contains 180 pages)
Resumo:
The toxicity of sediments in Sabine Lake, Texas, and adjoining Intracoastal Waterway canals was determined as part of bioeffects assessment studies managed by NOAA’s National Status and Trends Program. The objectives of the survey were to determine: (1) the incidence and degree of toxicity of sediments throughout the study area; (2) the spatial patterns (or gradients) in chemical contamination and toxicity, if any, throughout the study area; (3) the spatial extent of chemical contamination and toxicity; and (4) the statistical relationships between measures of toxicity and concentrations of chemicals in the sediments. Surficial sediment samples were collected during August, 1995 from 66 randomly-chosen locations. Laboratory toxicity tests were performed as indicators of potential ecotoxicological effects in sediments. A battery of tests was performed to generate information from different phases (components) of the sediments. Tests were selected to represent a range in toxicological endpoints from acute to chronic sublethal responses. Toxicological tests were conducted to measure: reduced survival of adult amphipods exposed to solid-phase sediments; impaired fertilization success and abnormal morphological development in gametes and embryos, respectively, of sea urchins exposed to pore waters; reduced metabolic activity of a marine bioluminescent bacteria exposed to organic solvent extracts; and induction of a cytochrome P-450 reporter gene system in exposures to solvent extracts of the sediments. Chemical analyses were performed on portions of each sample to quantify the concentrations of trace metals, polynuclear aromatic hydrocarbons, and chlorinated organic compounds. Correlation analyses were conducted to determine the relationships between measures of toxicity and concentrations of potentially toxic substances in the samples. Based upon the compilation of results from chemical analyses and toxicity tests, the quality of sediments in Sabine Lake and vicinity did not appear to be severely degraded. Chemical concentrations rarely exceeded effects-based numerical guidelines, suggesting that toxicant-induced effects would not be expected in most areas. None of the samples was highly toxic in acute amphipod survival tests and a minority (23%) of samples were highly toxic in sublethal urchin fertilization tests. Although toxic responses occurred frequently (94% of samples) in urchin embryo development tests performed with 100% pore waters, toxicity diminished markedly in tests done with diluted pore waters. Microbial bioluminescent activity was not reduced to a great degree (no EC50 <0.06 mg/ml) and cytochrome P-450 activity was not highly induced (6 samples exceeded 37.1 ug/g benzo[a]pyrene equivalents) in tests done with organic solvent extracts. Urchin embryological development was highly correlated with concentrations of ammonia and many trace metals. Cytochrome P450 induction was highly correlated with concentrations of a number of classes of organic compounds (including the polynuclear aromatic hydrocarbons and chlorinated compounds). (PDF contains 51 pages)
Resumo:
This dissertation: 1) determines the factor(s) responsible for spawning induction in NematosteJla vectensis; 2) isolates, describes, and documents the source of jelly from egg masses of N. vectensis; and 3) describes N. vectensis' early development. Namatostella vectensis were maintained on a 7-day mussel feeding/water change regime over 159 days. Within 36 hours of mussel feeding/water change. 69.1% of females and 78.5% of males spawned reliably. Through manipulation of feeding, water change, oxygen and nitrogenous waste concentrations, spawning induction was found to be triggered by the oxygen concentration associated with water change, and not by feeding. Ammonia, anemones' major waste product, inhibited this induction in a concentration-dependent manner. Female N. vectensis release eggs in a persistent jellied egg mass which is unique among the Actiniaria. The major component of this egg mass jelly was a positive periodic acid-Schiffs staining, 39.5-40.5 kD glycoprotein. Antibodies developed in rabbits against this glycoprotein bound to jelly of intact egg masses and to granules (~ 2.8 IJm in diameter) present in female anemone mesenteries and their associated filaments. Antibodies did not label male tissues. Nematostella vecfensis embryos underwent first karyokinesis -60 minutes following the addition of sperm to eggs. Second nuclear division took place, followed by first cleavage, 90-120 minutes later. Each of the 4 blastomeres that resulted from first cleavage contained a single nucleus. Arrangement of these blastomeres ranged from radial to pseudospiral. Embryonic development was both asynchronous and holoblastic. Following formation of the 4-cell stage, 71% of embryos proceeded to cleave again to form an 8-cell stage. In each of the remaining 29% of embryos, a fusion of from 2-4 blastomeres resulted in 4 possible patterns which had no affect on either cleavage interval timing or subsequent development. The fusion event was not due to ooplasmic segregation. Blastomeres isolated from 4-celled embryos were regulative and developed into normal planula larvae and juvenile anemones that were 1/4 the size of those that developed from intact 4-celled embryos. Embryos exhibiting the fusion phenomenon were examined at the fine structural level. The fusion phenomenon resulted in formation of a secondary syncytium and was not a mere compaction of blastomeres.
Resumo:
A five months survey was conducted to identify the aquatic macrophytes in fishponds and reservoirs in Makurdi (Benue State, Nigeria) between August and December 1999. A total of 3-prominent aquatic macrophytes were identified: Ipomoea aquatica, Nymphae lotus and Echinochloa pyramidalis at two-study sites (site 1, receives organic manure effluent from a cattle ranch, site 2, receives inorganic fertilizer through application). Ipomoea aquatica were found restricted to site l, while Nymphae lotus and Echinochloa pyramidalis were found associated with site 2. Analysis of the results indicates high level of ammonia-nitrogen at site 1 compared to site 2. Mineral analysis of the plant tissues indicate high level of iron in Ipomoea aquatica and Nymphae lotus. Mineral concentration were found to be significantly higher (P,L, 0.05) in Ipomoea aquatica and Nymphae lotus when compared with concentration in Echinochloa pyramidalis
Resumo:
A five months survey was conducted to identify the aquatic macrophytes in fishponds and reservoirs in Makurdi (Benue State, Nigeria) between August and December 1999. A total of 3-prominent aquatic macrophytes were identified: Ipomoea aquatica, Nymphae lotus and Echinochloa pyramidalis at two-study sites (site 1, receives organic manure effluent from a cattle ranch, site 2, receives inorganic fertilizer through application). Ipomoea aquatica were found restricted to site l, while Nymphae lotus and Echinochloa pyramidalis were found associated with site 2. Analysis of the results indicates high level of ammonia-nitrogen at site 1 compared to site 2. Mineral analysis of the plant tissues indicate high level of iron in Ipomoea aquatica and Nymphae lotus. Mineral concentration were found to be significantly higher (P,L, 0.05) in Ipomoea aquatica and Nymphae lotus when compared with concentration in Echinochloa pyramidalis
Resumo:
The organometallic chemistry of the hexagonally close-packed Ru(001) surface has been studied using electron energy loss spectroscopy and thermal desorption mass spectrometry. The molecules that have been studied are acetylene, formamide and ammonia. The chemistry of acetylene and formamide has also been investigated in the presence of coadsorbed hydrogen and oxygen adatoms.
Acetylene is adsorbed molecularly on Ru(001) below approximately 230 K, with rehybridization of the molecule to nearly sp^3 occurring. The principal decomposition products at higher temperatures are ethylidyne (CCH_3) and acetylide (CCH) between 230 and 350 K, and methylidyne (CH) and surface carbon at higher temperatures. Some methylidyne is stable to approximately 700 K. The preadsorption of hydrogen does not alter the decomposition products of acetylene, but reduces the saturation coverage and also leads to the formation of a small amount of ethylene (via an η^2-CHCH_2 species) which desorbs molecularly near 175 K. Preadsorbed oxygen also reduces the saturation coverage of acetylene but has virtually no effect on the nature of the molecularly chemisorbed acetylene. It does, however, lead to the formation of an sp^2-hybridized vinylidene (CCH_2) species in the decomposition of acetylene, in addition to the decomposition products that are formed on the clean surface. There is no molecular desorption of chemisorbed acetylene from clean Ru(001), hydrogen-presaturated Ru(001), or oxygen-presaturated Ru(001).
The adsorption and decomposition of formamide has been studied on clean Ru(001), hydrogen-presaturated Ru(001), and Ru(001)-p(1x2)-O (oxygen adatom coverage = 0.5). On clean Ru(001), the adsorption of low coverages of formamide at 80 K results in CH bond cleavage and rehybridization of the carbonyl double bond to produce an η^2 (C,O)-NH_2CO species. This species is stable to approximately 250 K at which point it decomposes to yield a mixture of coadsorbed carbon monoxide, ammonia, an NH species and hydrogen adatoms. The decomposition of NH to hydrogen and nitrogen adatoms occurs between 350 and 400 K, and the thermal desorption products are NH_3 (-315 K), H_2 (-420 K), CO (-480 K) and N_2 (-770 K). At higher formamide coverages, some formamide is adsorbed molecularly at 80 K, leading both to molecular desorption and to the formation of a new surface intermediate between 300 and 375 K that is identified tentatively as η^1(N)-NCHO. On Ru(001)- p(1x2)-O and hydrogen-presaturated Ru(001), formamide adsorbs molecularly at 80 K in an η^1(O)- NH_2CHO configuration. On the oxygen-precovered surface, the molecularly adsorbed formamide undergoes competing desorption and decomposition, resulting in the formation of an η^2(N,O)-NHCHO species (analogous to a bidentate formate) at approximately 265 K. This species decomposes near 420 K with the evolution of CO and H_2 into the gas phase. On the hydrogen precovered surface, the Η^1(O)-NH_2CHO converts below 200 K to η^2(C,O)-NH_2CHO and η^2(C,O)-NH^2CO, with some molecular desorption occurring also at high coverage. The η^2(C,O)-bonded species decompose in a manner similar to the decomposition of η^2(C,O)-NH_2CO on the clean surface, although the formation of ammonia is not detected.
Ammonia adsorbs reversibly on Ru(001) at 80 K, with negligible dissociation occurring as the surface is annealed The EEL spectra of ammonia on Ru(001) are very similar to those of ammonia on other metal surfaces. Off-specular EEL spectra of chemisorbed ammonia allow the v(Ru-NH_3) and ρ(NH_3) vibrational loss features to be resolved near 340 and 625 cm^(-1), respectively. The intense δ_g (NH_3) loss feature shifts downward in frequency with increasing ammonia coverage, from approximately 1160 cm^(-1) in the low coverage limit to 1070 cm^(-1) at saturation. In coordination compounds of ammonia, the frequency of this mode shifts downward with decreasing charge on the metal atom, and its downshift on Ru(001) can be correlated with the large work function decrease that the surface has previously been shown to undergo when ammonia is adsorbed. The EELS data are consistent with ammonia adsorption in on-top sites. Second-layer and multilayer ammonia on Ru(001) have also been characterized vibrationally, and the results are similar to those obtained for other metal surfaces.
Resumo:
During the 160th research cruise of the FRV "Walther Herwig III" in the North Sea in May 1995 an ice-storage experiment with whiting was performed. Gutted whiting with and without spleen was stored in melting water-ice. Freshness and/or spoilage were monitored by measuring sensory, chemical, physical and microbiological indicators. It was found that besides the classical sensory assessment on the cooked sample and the EU-quality grading scheme, the microbiological counts were of major importance for the determination of the degree of freshness or spoilage. The cfu (colony forming units) of spoilage bacteria on the skin correlated significantly with time in ice. A very good correlation was also found for the cfu of spoilage bacteria with the sensory assessed odour of the cooked fillet sample. The measurement of the fish tissue with the Intellectron Fischtester VI and the determination of the creatine content in fillet are both suitable freshness and spoilage indicators. The pH-value measured in different body compartments and in musele homogenate and the ammonia content are only of limited value for freshness determination. Removal of kidney did not influence the shelf life.
Resumo:
The electrochemical and electrocatalytic behavior of a series of heteropolytungstate anions in which a tungsten atom in the well known Keggin structure has been replaced by an iron atom is described. All of the iron substituted ions exhibit a one electron reversible couple associated with the Fe3+ center and a pair of two electron waves attributed to electron addition and removal from the tungsten oxo framework. The pH and ionic strength effects upon the various electrochemical processes are discussed and interpreted in terms of a competition between protonation and ion pairing of the highly negatively charged ions.
The anions are efficient catalysts for the electroreduction of hydrogen peroxide. A catalytic mechanism involving a formally Fe(IV) intermediate is proposed. Pulse radiolysis experiments were employed to detect the intermediate and evaluate the rate constants for the reactions in which it is formed and decomposed. A chain mechanism for the catalytic decomposition of hydrogen peroxide in which the Fe center shuttles between the +2, +3, and +4 oxidation states is proposed to explain the non-integral stoichiometry observed for the iron substituted polytungstate catalyzed electroreduction of hydrogen peroxide.
The anions are also efficient electrocatalyst for the electrochemical conversion of nitric oxide to ammonia. The catalyzed reduction does not produce hydroxylamine as an intermediate and appears to depend upon the ability of the multiply reduced heteropolytungstates to deliver several electrons to the bound NO group in a concerted step. A valuable feature of the heteropolytungstates is the ease at which the formal potentials of the several redox couples they exhibit may be shifted by changing the identity of the central heteroatom. Exploitation of this feature provided diagnostic information that was decisive in establishing the mechanism of electrocatalytic reduction.
The iron substituted heteropolytungstates are not degraded by repeated cycling between their oxidized and reduced states. They also show superior activity compared to their unsubstituted analogues, indicating that the Fe center acts as a binding site that facilitates inner-sphere electron transfer processes. The basic electrochemistry of several other transition metal substituted Keggin ions is also described.
Resumo:
The initial probabilities of activated, dissociative chemisorption of methane and ethane on Pt(110)-(1 x 2) have been measured. The surface temperature was varied from 450 to 900 K with the reactant gas temperature constant at 300 K. Under these conditions, we probe the kinetics of dissociation via trapping-mediated (as opposed to 'direct') mechanism. It was found that the probabilities of dissociation of both methane and ethane were strong functions of the surface temperature with an apparent activation energies of 14.4 kcal/mol for methane and 2.8 kcal/mol for ethane, which implys that the methane and ethane molecules have fully accommodated to the surface temperature. Kinetic isotope effects were observed for both reactions, indicating that the C-H bond cleavage was involved in the rate-limiting step. A mechanistic model based on the trapping-mediated mechanism is used to explain the observed kinetic behavior. The activation energies for C-H bond dissociation of the thermally accommodated methane and ethane on the surface extracted from the model are 18.4 and 10.3 kcal/mol, respectively.
The studies of the catalytic decomposition of formic acid on the Ru(001) surface with thermal desorption mass spectrometry following the adsorption of DCOOH and HCOOH on the surface at 130 and 310 K are described. Formic acid (DCOOH) chemisorbs dissociatively on the surface via both the cleavage of its O-H bond to form a formate and a hydrogen adatom, and the cleavage of its C-O bond to form a carbon monoxide, a deuterium adatom and an hydroxyl (OH). The former is the predominant reaction. The rate of desorption of carbon dioxide is a direct measure of the kinetics of decomposition of the surface formate. It is characterized by a kinetic isotope effect, an increasingly narrow FWHM, and an upward shift in peak temperature with Ɵ_T, the coverage of the dissociatively adsorbed formic acid. The FWHM and the peak temperature change from 18 K and 326 K at Ɵ_T = 0.04 to 8 K and 395 K at Ɵ_T = 0.89. The increase in the apparent activation energy of the C-D bond cleavage is largely a result of self-poisoning by the formate, the presence of which on the surface alters the electronic properties of the surface such that the activation energy of the decomposition of formate is increased. The variation of the activation energy for carbon dioxide formation with Ɵ_T accounts for the observed sharp carbon dioxide peak. The coverage of surface formate can be adjusted over a relatively wide range so that the activation energy for C-D bond cleavage in the case of DCOOH can be adjusted to be below, approximately equal to, or well above the activation energy for the recombinative desorption of the deuterium adatoms. Accordingly, the desorption of deuterium was observed to be governed completely by the desorption kinetics of the deuterium adatoms at low Ɵ_T, jointly by the kinetics of deuterium desorption and C-D bond cleavage at intermediate Ɵ_T, and solely by the kinetics of C-D bond cleavage at high Ɵ_T. The overall branching ratio of the formate to carbon dioxide and carbon monoxide is approximately unity, regardless the initial coverage Ɵ_T, even though the activation energy for the production of carbon dioxide varies with Ɵ_T. The desorption of water, which implies C-O bond cleavage of the formate, appears at approximately the same temperature as that of carbon dioxide. These observations suggest that the cleavage of the C-D bond and that of the C-O bond of two surface formates are coupled, possibly via the formation of a short-lived surface complex that is the precursor to to the decomposition.
The measurement of steady-state rate is demonstrated here to be valuable in determining kinetics associated with short-lived, molecularly adsorbed precursor to further reactions on the surface, by determining the kinetic parameters of the molecular precursor of formaldehyde to its dissociation on the Pt(110)-(1 x 2) surface.
Overlayers of nitrogen adatoms on Ru(001) have been characterized both by thermal desorption mass spectrometry and low-energy electron diffraction, as well as chemically via the postadsorption and desorption of ammonia and carbon monoxide.
The nitrogen-adatom overlayer was prepared by decomposing ammonia thermally on the surface at a pressure of 2.8 x 10^(-6) Torr and a temperature of 480 K. The saturated overlayer prepared under these conditions has associated with it a (√247/10 x √247/10)R22.7° LEED pattern, has two peaks in its thermal desorption spectrum, and has a fractional surface coverage of 0.40. Annealing the overlayer to approximately 535 K results in a rather sharp (√3 x √3)R30° LEED pattern with an associated fractional surface coverage of one-third. Annealing the overlayer further to 620 K results in the disappearance of the low-temperature thermal desorption peak and the appearance of a rather fuzzy p(2x2) LEED pattern with an associated fractional surface coverage of approximately one-fourth. In the low coverage limit, the presence of the (√3 x √3)R30° N overlayer alters the surface in such a way that the binding energy of ammonia is increased by 20% relative to the clean surface, whereas that of carbon monoxide is reduced by 15%.
A general methodology for the indirect relative determination of the absolute fractional surface coverages has been developed and was utilized to determine the saturation fractional coverage of hydrogen on Ru(001). Formaldehyde was employed as a bridge to lead us from the known reference point of the saturation fractional coverage of carbon monoxide to unknown reference point of the fractional coverage of hydrogen on Ru(001), which is then used to determine accurately the saturation fractional coverage of hydrogen. We find that ƟSAT/H = 1.02 (±0.05), i.e., the surface stoichiometry is Ru : H = 1 : 1. The relative nature of the method, which cancels systematic errors, together with the utilization of a glass envelope around the mass spectrometer, which reduces spurious contributions in the thermal desorption spectra, results in high accuracy in the determination of absolute fractional coverages.