959 resultados para American Baptist Free Mission Society


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertically aligned ZnO nanorods have been grown on silicon substrates pre-coated with thin, less than 10 nm, textured ZnO seeding layers via a vapor-solid mechanism. The ZnO seeding layers, which were essential for vertical alignment of ZnO nanorods without using any metal catalyst, were prepared by decomposing zinc acetate. The structure and the luminescence properties of the ZnO nanorods synthesized onto ZnO seeding layers were investigated and their morphologies were compared with those of single-crystalline GaN substrates and silicon substrates covered with sputtered ZnO flms. Patterning of ZnO seed layers using photolithography allowed the fabrication of patterned ZnO-nanorod arrays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore’s usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H2O2-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially “light up” in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cooled. An internal heat generation is also considered which is dependent on the fluid temperature. The governing equations are solved numerically by finite volume method. The Prandtl number, Pr of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number, Ra are considered as 0.5 and 105 respectively. The effect of heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Individual-based models describing the migration and proliferation of a population of cells frequently restrict the cells to a predefined lattice. An implicit assumption of this type of lattice based model is that a proliferative population will always eventually fill the lattice. Here we develop a new lattice-free individual-based model that incorporates cell-to-cell crowding effects. We also derive approximate mean-field descriptions for the lattice-free model in two special cases motivated by commonly used experimental setups. Lattice-free simulation results are compared to these mean-field descriptions and to a corresponding lattice-based model. Data from a proliferation experiment is used to estimate the parameters for the new model, including the cell proliferation rate, showing that the model fits the data well. An important aspect of the lattice-free model is that the confluent cell density is not predefined, as with lattice-based models, but an emergent model property. As a consequence of the more realistic, irregular configuration of cells in the lattice-free model, the population growth rate is much slower at high cell densities and the population cannot reach the same confluent density as an equivalent lattice-based model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, magnetohydrodynamic natural convection boundary layer flow of an electrically conducting and viscous incompressible fluid along a heated vertical flat plate with uniform heat and mass flux in the presence of strong cross magnetic field has been investigated. For smooth integrations the boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation as well as the free variable formulation. The nonsimilar parabolic partial differential equations are integrated numerically for Pr ≪1 that is appropriate for liquid metals against the local Hartmann parameter ξ . Further, asymptotic solutions are obtained near the leading edge using regular perturbation method for smaller values of ξ . Solutions for values of ξ ≫ 1 are also obtained by employing the matched asymptotic technique. The results obtained for small, large and all ξ regimes are examined in terms of shear stress, τw, rate of heat transfer, qw, and rate of mass transfer, mw, for important physical parameter. Attention has been given to the influence of Schmidt number, Sc, buoyancy ratio parameter, N and local Hartmann parameter, ξ on velocity, temperature and concentration distributions and noted that velocity and temperature of the fluid achieve their asymptotic profiles for Sc ≥ 10:0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive a semianalytical model to describe the interaction of a single photon emitter and a collection of arbitrarily shaped metal nanoparticles. The theory treats the metal nanoparticles classically within the electrostatic eigenmode method, wherein the surface plasmon resonances of collections of nanoparticles are represented by the hybridization of the plasmon modes of the noninteracting particles. The single photon emitter is represented by a quantum mechanical two-level system that exhibits line broadening due to a finite spontaneous decay rate. Plasmon-emitter coupling is described by solving the resulting Bloch equations. We illustrate the theory by studying model systems consisting of a single emitter coupled to one, two, and three nanoparticles, and we also compare the predictions of our model to published experimental data. ©2012 American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal models typically require a known genetic pedigree to estimate quantitative genetic parameters. Here we test whether animal models can alternatively be based on estimates of relatedness derived entirely from molecular marker data. Our case study is the morphology of a wild bird population, for which we report estimates of the genetic variance-covariance matrices (G) of six morphological traits using three methods: the traditional animal model; a molecular marker-based approach to estimate heritability based on Ritland's pairwise regression method; and a new approach using a molecular genealogy arranged in a relatedness matrix (R) to replace the pedigree in an animal model. Using the traditional animal model, we found significant genetic variance for all six traits and positive genetic covariance among traits. The pairwise regression method did not return reliable estimates of quantitative genetic parameters in this population, with estimates of genetic variance and covariance typically being very small or negative. In contrast, we found mixed evidence for the use of the pedigree-free animal model. Similar to the pairwise regression method, the pedigree-free approach performed poorly when the full-rank R matrix based on the molecular genealogy was employed. However, performance improved substantially when we reduced the dimensionality of the R matrix in order to maximize the signal to noise ratio. Using reduced-rank R matrices generated estimates of genetic variance that were much closer to those from the traditional model. Nevertheless, this method was less reliable at estimating covariances, which were often estimated to be negative. Taken together, these results suggest that pedigree-free animal models can recover quantitative genetic information, although the signal remains relatively weak. It remains to be determined whether this problem can be overcome by the use of a more powerful battery of molecular markers and improved methods for reconstructing genealogies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to develop a second-moment closure with a near-wall turbulent pressure diffusion model for three-dimensional complex flows, and to evaluate the influence of the turbulent diffusion term on the prediction of detached and secondary flows. A complete turbulent diffusion model including a near-wall turbulent pressure diffusion closure for the slow part was developed based on the tensorial form of Lumley and included in a re-calibrated wall-normal-free Reynolds-stress model developed by Gerolymos and Vallet. The proposed model was validated against several one-, two, and three-dimensional complex flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Separately, actinic keratosis (AK) and cutaneous squamous cell carcinoma (SCC) have been associated with cutaneous human papillomavirus (HPV) infections. To further explore the association between HPV infection and SCC development, we determined markers of cutaneous HPV infection within a single population in persons with precursor lesions (AK), cancerous lesions (SCC), and without. Serum and plucked eyebrow hairs were collected from 57 tumor-free controls, 126 AK, and 64 SCC cases. Presence of HPV L1 and E6 seroreactivity and viral DNA were determined for HPV types 5, 8, 15, 16, 20, 24, and 38. Significant positive associations with increasing severity of the lesions (controls, AK, and SCC, respectively) were observed for overall HPV L1 seropositivity (13%, 26%, and 37%) and for HPV8 (4%, 17%, and 30%). In parallel, the proportion of L1 seropositive individuals against multiple HPV types increased from 14% to 39% and 45%. The overall E6 seroreactivity, however, tended to decline with AK and SCC, especially for HPV8 (21%, 11%, and 2%). HPV DNA positivity was most prevalent in the AK cases (54%) compared with the SCC cases (44%) and the tumor-free controls (40%). Among all participants, there was a positive trend between overall HPV DNA positivity and L1 seropositivity, but not E6 seropositivity. Taken together, our data suggest that cutaneous HPV infections accompanied by detectable HPV DNA in eyebrow hairs and HPV L1 seropositivity, but not E6 seropositivity, are associated with an increased risk of AK and SCC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: There are strong logical reasons why energy expended in metabolism should influence the energy acquired in food-intake behavior. However, the relation has never been established, and it is not known why certain people experience hunger in the presence of large amounts of body energy. Objective: We investigated the effect of the resting metabolic rate (RMR) on objective measures of whole-day food intake and hunger. Design: We carried out a 12-wk intervention that involved 41 overweight and obese men and women [mean ± SD age: 43.1 ± 7.5 y; BMI (in kg/m2): 30.7 ± 3.9] who were tested under conditions of physical activity (sedentary or active) and dietary energy density (17 or 10 kJ/g). RMR, daily energy intake, meal size, and hunger were assessed within the same day and across each condition. Results: We obtained evidence that RMR is correlated with meal size and daily energy intake in overweight and obese individuals. Participants with high RMRs showed increased levels of hunger across the day (P < 0.0001) and greater food intake (P < 0.00001) than did individuals with lower RMRs. These effects were independent of sex and food energy density. The change in RMR was also related to energy intake (P < 0.0001). Conclusions: We propose that RMR (largely determined by fat-free mass) may be a marker of energy intake and could represent a physiologic signal for hunger. These results may have implications for additional research possibilities in appetite, energy homeostasis, and obesity. This trial was registered under international standard identification for controlled trials as ISRCTN47291569.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation has shown that by transforming free caustic in red mud (RM) to Bayer hydrotalcite (during the seawater neutralization (SWN) process) enables a more controlled release mechanism for the neutralization of acid sulfate soils. The formation of hydrotalcite has been confirmed by X-ray diffraction (XRD) and differential thermalgravimetric analysis (DTG), while the dissolution of hydrotalcite and sodalite has been observed through XRD, DTG, pH plots, and ICP-OES. Coupling of all techniques enabled three neutralization mechanisms to be determined: (1) free alkali, (2) hydrotalcite dissolution, and (3) sodalite dissolution. The mechanisms are determined on the basis of ICP-OES and kinetic information. When the mass of RM or SWN-RM is greater than 0.08 g/50 mL, the pH of solution increases to a suitable value for plant life with aluminum leaching kept at a minimum. To obtain a neutralization pH greater than 6 in 10 min, the following ratio of bauxite residue (g) in 50 mL with a known iron sulfate (Fe2(SO4)3) concentration can be determined as follows: 0.04 g:50 mL:0.1 g/L of Fe2(SO4)3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C3N4) and electronically active graphene. We find an inhomogeneous planar substrate (g-C3N4) promotes electronrich and hole-rich regions, i.e., forming a well-defined electron−hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C3N4 substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C3N4 interface opens a 70 meV gap in g-C3N4-supported graphene, a feature that can potentially allow overcoming the graphene’s band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C3N4 is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C3N4 monolayer, the hybrid graphene/g-C3N4 complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical study is presented to examine the fingering instability of a gravity-driven thin liquid film flowing down the outer wall of a vertical cylinder. The lubrication approximation is employed to derive an evolution equation for the height of the film, which is dependent on a single parameter, the dimensionless cylinder radius. This equation is identified as a special case of that which describes thin film flow down an inclined plane. Fully three-dimensional simulations of the film depict a fingering pattern at the advancing contact line. We find the number of fingers observed in our simulations to be in excellent agreement with experimental observations and a linear stability analysis reported recently by Smolka & SeGall (Phys Fluids 23, 092103 (2011)). As the radius of the cylinder decreases, the modes of perturbation have an increased growth rate, thus increasing cylinder curvature partially acts to encourage the contact line instability. In direct competition with this behaviour, a decrease in cylinder radius means that fewer fingers are able to form around the circumference of the cylinder. Indeed, for a sufficiently small radius, a transition is observed, at which point the contact line is stable to transverse perturbations of all wavenumbers. In this regime, free surface instabilities lead to the development of wave patterns in the axial direction, and the flow features become perfectly analogous to the two-dimensional flow of a thin film down an inverted plane as studied by Lin & Kondic (Phys Fluids 22, 052105 (2010)). Finally, we simulate the flow of a single drop down the outside of the cylinder. Our results show that for drops with low volume, the cylinder curvature has the effect of increasing drop speed and hence promoting the phenomenon of pearling. On the other hand, drops with much larger volume evolve to form single long rivulets with a similar shape to a finger formed in the aforementioned simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the deposition of C-20 fullerenes on a diamond (001)-(2x1) surface and the fabrication of C-20 thin film at 100 K were investigated by a molecular dynamics (MD) simulation using the many-body Brenner bond order potential. First, we found that the collision dynamic of a single C-20 fullerene on a diamond surface was strongly dependent on its impact energy. Within the energy range 10-45 eV, the C-20 fullerene chemisorbed on the surface retained its free cage structure. This is consistent with the experimental observation, where it was called the memory effect in "C-20-type" films [P. Melion , Int. J. Mod. B 9, 339 (1995); P. Milani , Cluster Beam Synthesis of Nanostructured Materials (Springer, Berlin, 1999)]. Next, more than one hundred C-20 (10-25 eV) were deposited one after the other onto the surface. The initial growth stage of C-20 thin film was observed to be in the three-dimensional island mode. The randomly deposited C-20 fullerenes stacked on diamond surface and acted as building blocks forming a polymerlike structure. The assembled film was also highly porous due to cluster-cluster interaction. The bond angle distribution and the neighbor-atom-number distribution of the film presented a well-defined local order, which is of sp(3) hybridization character, the same as that of a free C-20 cage. These simulation results are again in good agreement with the experimental observation. Finally, the deposited C-20 film showed high stability even when the temperature was raised up to 1500 K.