847 resultados para Amazonian fat
Resumo:
BACKGROUND: The influence of adiposity on upper-limb bone strength has rarely been studied in children, despite the high incidence of forearm fractures in this population. OBJECTIVE: The objective was to compare the influence of muscle and fat tissues on bone strength between the upper and lower limbs in prepubertal children. DESIGN: Bone mineral content, total bone cross-sectional area, cortical bone area (CoA), cortical thickness (CoTh) at the radius and tibia (4% and 66%, respectively), trabecular density (TrD), bone strength index (4% sites), cortical density (CoD), stress-strain index, and muscle and fat areas (66% sites) were measured by using peripheral quantitative computed tomography in 427 children (206 boys) aged 7-10 y. RESULTS: Overweight children (n = 93) had greater values for bone variables (0.3-1.3 SD; P < 0.0001) than did their normal-weight peers, except for CoD 66% and CoTh 4%. The between-group differences were 21-87% greater at the tibia than at the radius. After adjustment for muscle cross-sectional area, TrD 4%, bone mineral content, CoA, and CoTh 66% at the tibia remained greater in overweight children, whereas at the distal radius total bone cross-sectional area and CoTh were smaller in overweight children (P < 0.05). Overweight children had a greater fat-muscle ratio than did normal-weight children, particularly in the forearm (92 +/- 28% compared with 57 +/- 17%). Fat-muscle ratio correlated negatively with all bone variables, except for TrD and CoD, after adjustment for body weight (r = -0.17 to -0.54; P < 0.0001). CONCLUSIONS: Overweight children had stronger bones than did their normal-weight peers, largely because of greater muscle size. However, the overweight children had a high proportion of fat relative to muscle in the forearm, which is associated with reduced bone strength.
Resumo:
Steers were sorted into four groups based on hip height and fat cover at the start of the finishing period. Each group of sorted steers was fed diets containing 0.59 or 0.64 Mcal NEg per lb. of diet dry matter. Steers with less initial fat cover (0.08 in.) compared with those with more (0.17) had less carcass fat cover 103 days later. The steers with less fat cover accumulated fat at a faster rate, but this was not apparent prior to 80 days. Accretion of fat was best predicted by an exponential growth equation, and was not affected by the two concentrations of energy fed in this study. Steers with greater initial height accumulated fat cover at a slower rate than shorter steers. This difference was interpreted to mean that large-frame steers accumulate subcutaneous fat at a slower rate than medium-frame steers. Increase in area of the ribeye was best described by a linear equation. Initial fat cover, hip height, and concentrations of energy in the diet did not affect rate of growth of this muscle. Predicting carcass fat cover from the initial ultrasound measurement of fat thickness found 46 of the 51 carcasses with less than 0.4 in. of fat cover. Twelve carcasses predicted to have less than 0.4 in. of fat cover had more than 0.4 in. Five carcasses predicted to have more than 0.4 in. actually had less than that. Accurate initial measurements of initial fat thickness with ultrasound might be a useful measurement to sort cattle for specific marketing grids.
Resumo:
Two 3 x 3 latin squares were utilized in an 84-day digestion trial with ruminally- and duodenallycannulated steers. Diets consisted of 73 to 78% whole corn grain, 12.3% corn silage and 2.0% N, with treatment differences being high-oil corn- (HOC), isogenetic typical-corn- (TC), or isogenetic typical-corn + fat- (TC+F) based diets. The HOC and TC+F diets were formulated to provide the same ether extract (EE) content. All diets were fed at 90% of ad libitum intake. Chromic oxide was used as a digestibility marker. Total tract dry matter (DM) (P=.08), organic matter (OM) (P=.08) and nitrogen (N) (P=.06) digestibilities tended to be greater for TC than HOC diets, whereas starch neutral detergent fiber (NDF), acid detergent fiber (ADF), and ether extract digestibilities were similar (P>.10). There were no differences (P>.10) in total tract dry matter, organic matter, starch, NDF, ADF, ether extract, or nitrogen digestibilities between TC+F and HOC diets or TC and TC+F diets. Ruminal digestion of dry matter, organic matter, starch, NDF, ADF, and feed nitrogen was similar (P>.10) among treatments. Microbial-nitrogen flow and efficiencies were also similar (P>.10) among treatments. Results indicate finishing steer diets composed of primarily HOC are equally or less digestible than similar diets composed of TC, and adding fat to TC diets did not affect the digestibility of the diet when fed to finishing steers.
Resumo:
Yearling steers were fed corn-based diets supplemented with urea or soybean meal plus urea, and none, 2%, or 4% fat. All steers were implanted with Revalorâ-S and fed for 118 days. Adding fat did not improve performance of the steers in the feedlot or improve carcass characteristics. Feeding soybean meal increased rate of gain, improved feed efficiency, increased carcass weight, and tended to improve carcass quality grades compared with feeding urea. Adding 4% fat decreased feed intake, suggesting that corn-based diets may contain enough oil to approach the quantity of fat that can be utilized effectively in a ruminant diet.
Resumo:
White corn was compared with yellow corn in a 180-day finishing trial with 600 lb. Angus steers fed 90% concentrate diets. Steers fed yellow corn consumed 3.3% less feed and were 3.8% more efficient in feed utilization. Rate of gain and carcass characteristics were similar for steers fed white or yellow corn. The color of subcutaneous fat over the ribs was significantly whiter from carcasses of steers fed white corn compared with those fed yellow corn. The results of this study indicate that white corn may be used instead of barley to produce whiter fat in beef carcasses.
Resumo:
It is unclear whether regular exercise alone (no caloric restriction) is a useful strategy to reduce adiposity and obesity-related metabolic risk factors in obese girls. We examined the effects of aerobic (AE) vs. resistance exercise (RE) alone on visceral adipose tissue (VAT), intrahepatic lipid, and insulin sensitivity in obese girls. Forty-four obese adolescent girls (BMI ≥95th percentile, 12-18 yr) with abdominal obesity (waist circumference 106.5 ± 11.1 cm) were randomized to 3 mo of 180 min/wk AE (n = 16) or RE (n = 16) or a nonexercising control group (n = 12). Total fat and VAT were assessed by MRI and intrahepatic lipid by proton magnetic resonance spectroscopy. Intermuscular AT (IMAT) was measured by CT. Insulin sensitivity was evaluated by a 3-h hyperinsulinemic (80 mU·m(2)·min(-1)) euglycemic clamp. Compared with controls (0.13 ± 1.10 kg), body weight did not change (P > 0.1) in the AE (-1.31 ± 1.43 kg) and RE (-0.31 ± 1.38 kg) groups. Despite the absence of weight loss, total body fat (%) and IMAT decreased (P < 0.05) in both exercise groups compared with control. Compared with control, significant (P < 0.05) reductions in VAT (Δ-15.68 ± 7.64 cm(2)) and intrahepatic lipid (Δ-1.70 ± 0.74%) and improvement in insulin sensitivity (Δ0.92 ± 0.27 mg·kg(-1)·min(-1) per μU/ml) were observed in the AE group but not the RE group. Improvements in insulin sensitivity in the AE group were associated with the reductions in total AT mass (r = -0.65, P = 0.02). In obese adolescent girls, AE but not RE is effective in reducing liver fat and visceral adiposity and improving insulin sensitivity independent of weight loss or calorie restriction.
Resumo:
Fat mobilization to meet energy requirements during early lactation is inevitable because of insufficient feed intake, but differs greatly among high-yielding dairy cows. Therefore, we studied milk production, feed intake, and body condition as well as metabolic and endocrine changes in high-yielding dairy cows to identify variable strategies in metabolic and endocrine adaptation to overcome postpartum metabolic load attributable to milk production. Cows used in this study varied in fat mobilization around calving, as classified by mean total liver fat concentrations (LFC) postpartum. German Holstein cows (n=27) were studied from dry off until d 63 postpartum in their third lactation. All cows were fed the same total mixed rations ad libitum during the dry period and lactation. Plasma concentrations of metabolites and hormones were measured in blood samples taken at d 56, 28, 15, and 5 before expected calving and at d 1 and once weekly up to d 63 postpartum. Liver biopsies were taken on d 56 and 15 before calving, and on d 1, 14, 28, and 49 postpartum to measure LFC and glycogen concentrations. Cows were grouped accordingly to mean total LFC on d 1, 14, and 28 in high, medium, and low fat-mobilizing cows. Mean LFC (±SEM) differed among groups and were 351±14, 250±10, and 159±9 mg/g of dry matter for high, medium, and low fat-mobilizing cows, respectively, whereas hepatic glycogen concentrations postpartum were the highest in low fat-mobilizing cows. Cows in the low group showed the highest dry matter intake and the least negative energy balance postpartum, but energy-corrected milk yield was similar among groups. The decrease in body weight postpartum was greatest in high fat-mobilizing cows, but the decrease in backfat thickness was greatest in medium fat-mobilizing cows. Plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate were highest around calving in high fat-mobilizing cows. Plasma triglycerides were highest in the medium group and plasma cholesterol concentrations were lowest in the high group at calving. During early lactation, the decrease in plasma glucose concentrations was greatest in the high group, and plasma insulin concentrations postpartum were highest in the low group. The revised quantitative insulin sensitivity check index values decreased during the transition period and postpartum, and were highest in the medium group. Plasma cortisol concentrations during the transition period and postpartum period and plasma leptin concentrations were highest in the medium group. In conclusion, cows adapted differently to the metabolic load and used variable strategies for homeorhetic regulation of milk production. Differences in fat mobilization were part of these strategies and contributed to the individual adaptation of energy metabolism to milk production.
Resumo:
During the transition period, the lipid metabolism of dairy cows is markedly affected by energy status. Fatty liver is one of the main health disorders after parturition. The aim of this study was to evaluate the effects of a negative energy balance (NEB) at 2 stages in lactation [NEB at the onset of lactation postpartum (p.p.) and a deliberately induced NEB by feed restriction near 100 d in milk] on liver triglyceride content and parameters of lipid metabolism in plasma and liver based on mRNA abundance of associated genes. Fifty multiparous dairy cows were studied from wk 3 antepartum to approximately wk 17 p.p. in 2 periods. According to their energy balance in period 1 (parturition to wk 12 p.p.), cows were allocated to a control (CON; n=25) or a restriction group (RES; 70% of energy requirements; n=25) for 3 wk in mid lactation starting at around 100 d in milk (period 2). Liver triglyceride (TG) content, plasma nonesterified fatty acids (NEFA), and β-hydroxybutyrate were highest in wk 1 p.p. and decreased thereafter. During period 2, feed restriction did not affect liver TG and β-hydroxybutyrate concentration, whereas NEFA concentration was increased in RES cows as compared with CON cows. Hepatic mRNA abundances of tumor necrosis factor α, ATP citrate lyase, mitochondrial glycerol-3-phosphate acyltransferase, and glycerol-3-phosphate dehydrogenase 2 were not altered by lactational and energy status during both experimental periods. The expression of fatty acid synthase was higher in period 2 compared with period 1, but did not differ between RES and CON groups. The mRNA abundance of acetyl-coenzyme A-carboxylase showed a tendency toward higher expression during period 2 compared with period 1. The solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1) was upregulated in wk 1 p.p. and also during feed restriction in RES cows. In conclusion, the present study shows that a NEB has different effects on hepatic lipid metabolism and TG concentration in the liver of dairy cows at early and later lactation. Therefore, the homeorhetic adaptations during the periparturient period trigger excessive responses in metabolism, whereas during the homeostatic control of endocrine and metabolic systems after established lactation, as during the period of feed restriction in the present study, organs are well adapted to metabolic and environmental changes.
Resumo:
Insufficient feed intake during early lactation results in elevated body fat mobilization to meet energy demands for milk production. Hepatic energy metabolism is involved by increasing endogenous glucose production and hepatic glucose output for milk synthesis and by adaptation of postcalving fuel oxidation. Given that cows differ in their degree of fat mobilization around parturition, indicated by variable total liver fat concentration (LFC), the study investigated the influence of peripartum fat mobilization on hepatic gene expression involved in gluconeogenesis, fatty acid oxidation, ketogenesis, and cholesterol synthesis, as well as transcriptional factors referring to energy metabolism. German Holstein cows were grouped according to mean total LFC on d 1, 14, and 28 after parturition as low [<200mg of total fat/g of dry matter (DM); n=10], medium (200-300 mg of total fat/g of DM; n=10), and high (>300 mg of total fat/g of DM; n=7), indicating fat mobilization during early lactation. Cows were fed total mixed rations ad libitum and held under equal conditions. Liver biopsies were taken at d 56 and 15 before and d 1, 14, 28, and 49 after parturition to measure mRNA abundances of pyruvate carboxylase (PC); phosphoenolpyruvate carboxykinase; glucose-6-phosphatase; propionyl-coenzyme A (CoA) carboxylase α; carnitine palmitoyl-transferase 1A (CPT1A); acyl-CoA synthetase, long chain 1 (ASCL1); acyl-CoA dehydrogenase, very long chain; 3-hydroxy-3-methylglutaryl-CoA synthase 1 and 2; sterol regulatory element-binding factor 1; and peroxisome proliferator-activated factor α. Total LFC postpartum differed greatly among cows, and the mRNA abundance of most enzymes and transcription factors changed with time during the experimental period. Abundance of PC mRNA increased at parturition to a greater extent in high- and medium-LFC groups than in the low-LFC group. Significant LFC × time interactions for ACSL1 and CPT1A during the experimental period indicated variable gene expression depending on LFC after parturition. Correlations between hepatic gene expression and performance data and plasma concentrations of metabolites and hormones showed time-specific relations during the transition period. Elevated body fat mobilization during early lactation affected gene expression involved in gluconeogenesis to a greater extent than gene expression involved in lipid metabolism, indicating the dependence of hepatic glucose metabolism on hepatic lipid status and fat mobilization during early lactation.
Resumo:
In the last century, studies established the origin of pulmonary fat embolism (PFE) and identified mechanical trauma as main source for PFE. This prospective study focused on determining a possible influence of cardiopulmonary resuscitation (CPR), in the context of an aging population, on the occurrence of PFE. Lung tissue samples from 256 bodies were examined using the twin-edged knife technique without preliminary fixation but after staining with Sudan III. PFE grading was determined according to Falzi and performed at a 10× magnification. For statistical analysis, bodies were grouped by age, gender, and putrefaction and categorized following whether they had experienced trauma, CPR, the combination of both, or no mechanical impact. There was a significant correlation of trauma, CPR, and the combination of both to PFE but no noticeable influence of gender or putrefaction. An age over 70 years promotes a PFE due to resuscitation.
Resumo:
Obesity and diabetes are frequently associated with cardiovascular disease. When a normal heart is subjected to brief/sublethal repetitive ischemia and reperfusion (I/R), adaptive responses are activated to preserve cardiac structure and function. These responses include but are not limited to alterations in cardiac metabolism, reduced calcium responsiveness, and induction of antioxidant enzymes. In a model of ischemic cardiomyopathy inducible by brief repetitive I/R, we hypothesized that dysregulation of these adaptive responses in diet-induced obese (DIO) mice would contribute to enhanced myocardial injury. DIO C57BL/6J mice were subjected to 15 min of daily repetitive I/R while under short-acting anesthesia, a protocol that results in the development of fibrotic cardiomyopathy. Cardiac lipids and candidate gene expression were analyzed at 3 days, and histology at 5 days of repetitive I/R. Total free fatty acids (FFAs) in the cardiac extracts of DIO mice were significantly elevated, reflecting primarily the dietary fatty acid (FA) composition. Compared with lean controls, cardiac FA oxidation (FAO) capacity of DIO mice was significantly higher, concurrent with increased expression of FA metabolism gene transcripts. Following 15 min of daily repetitive I/R for 3 or 5 days, DIO mice exhibited increased susceptibility to I/R and, in contrast to lean mice, developed microinfarction, which was associated with an exaggerated inflammatory response. Repetitive I/R in DIO mice was associated with more profound significant downregulation of FA metabolism gene transcripts and elevated FFAs and triglycerides. Maladaptive metabolic changes of FA metabolism contribute to enhanced myocardial injury in diet-induced obesity.
Resumo:
Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.
Resumo:
BACKGROUND: Most theories of health-behavior change focus exclusively on individual self-regulation without taking social factors, such as social support, into account. This study's first aim was to systematically test the added value of received instrumental and emotional social support within the Health Action Process Approach (HAPA) in the context of dietary change. In the social support literature, gender effects emerge with regard to the effectiveness of social support. Thus, a second aim was the examination of gender differences in the association of social support with dietary behavior. METHODS: Participants were 252 overweight and obese individuals. At baseline and 12 months later, participants completed questionnaires on HAPA variables; diet-specific received social support and low-fat diet. RESULTS: For the prediction of intentions 12 months later, instrumental support was more beneficial for men than for women over and above individual self-regulation. In terms of dietary behavior at T2, a moderate main effect of instrumental support emerged. Moreover, received emotional social support was beneficial for men, but not for women in terms of a low-fat diet 12 months later. CONCLUSIONS: Effects of received instrumental social support found in this study provide new evidence for the added value of integrating social support into the HAPA.
Resumo:
Single planning interventions have been found to promote short-term dietary change. Repeated planning interventions may foster long-term effects on behavior change. It remains unknown whether there is a critical number of boosters to establish long-term maintenance of behavioral changes. This study aimed at investigating what social-cognitive variables mediate the effects of the interventions on dietary behavior change. Overall, 373 participants (n = 270 women, 72.4%; age M = 52.42, SD = 12.79) were randomly allocated to one of five groups: a control group, a single planning group, and three groups with 3, 6, or 9 weeks' repeated planning interventions. Follow-ups took place 4, 6, and 12 months after baseline. Change in fat consumption was not promoted by any of the interventions. In terms of social-cognitive variables, intentions, self-efficacy and coping planning displayed a time × group interaction, with the 9 weeks' planning group showing the most beneficial effects. Effect sizes, however, were very small. None of the tested planning interventions successfully promoted change in fat consumption across the 12 month period. This, however, could not be explained by problems with adherence to the intervention protocol. Potential explanations for this unexpected result are discussed.