920 resultados para Aleutian Islands Alaska
Resumo:
Understanding the effect of habitat fragmentation is a fundamental yet complicated aim of many ecological studies. Beni savanna is a naturally fragmented forest habitat, where forest islands exhibit variation in resources and threats. To understand how the availability of resources and threats affect the use of forest islands by parrots, we applied occupancy modeling to quantify use and detection probabilities for 12 parrot species on 60 forest islands. The presence of urucuri (Attalea phalerata) and macaw (Acrocomia aculeata) palms, the number of tree cavities on the islands, and the presence of selective logging,and fire were included as covariates associated with availability of resources and threats. The model-selection analysis indicated that both resources and threats variables explained the use of forest islands by parrots. For most species, the best models confirmed predictions. The number of cavities was positively associated with use of forest islands by 11 species. The area of the island and the presence of macaw palm showed a positive association with the probability of use by seven and five species, respectively, while selective logging and fire showed a negative association with five and six species, respectively. The Blue-throated Macaw (Ara glaucogularis), the critically endangered parrot species endemic to our study area, was the only species that showed a negative association with both threats. Monitoring continues to be essential to evaluate conservation and management actions of parrot populations. Understanding of how species are using this natural fragmented habitat will help determine which fragments should be preserved and which conservation actions are needed.
Resumo:
The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean.
Resumo:
The North Pacific and Bering Sea regions represent loci of cyclogenesis and storm track activity. In this paper climatological properties of extratropical storms in the North Pacific/Bering Sea are presented based upon aggregate statistics of individual storm tracks calculated by means of a feature-tracking algorithm run using NCEP–NCAR reanalysis data from 1948/49 to 2008, provided by the NOAA/Earth System Research Laboratory and the Cooperative Institute for Research in Environmental Sciences, Climate Diagnostics Center. Storm identification is based on the 850-hPa relative vorticity field (ζ) instead of the often-used mean sea level pressure; ζ is a prognostic field, a good indicator of synoptic-scale dynamics, and is directly related to the wind speed. Emphasis extends beyond winter to provide detailed consideration of all seasons. Results show that the interseasonal variability is not as large during the spring and autumn seasons. Most of the storm variables—genesis, intensity, track density—exhibited a maxima pattern that was oriented along a zonal axis. From season to season this axis underwent a north–south shift and, in some cases, a rotation to the northeast. This was determined to be a result of zonal heating variations and midtropospheric moisture patterns. Barotropic processes have an influence in shaping the downstream end of storm tracks and, together with the blocking influence of the coastal orography of northwest North America, result in high lysis concentrations, effectively making the Gulf of Alaska the “graveyard” of Pacific storms. Summer storms tended to be longest in duration. Temporal trends tended to be weak over the study area. SST did not emerge as a major cyclogenesis control in the Gulf of Alaska.
Resumo:
Molecular phylogenetic hypotheses of species-rich lineages in regions where geological history can be reliably inferred may provide insights into the scale of processes driving diversification. Here we sample all extant or recently extinct white-eye (Zosterops) taxa of the southwest Indian Ocean, combined with samples from all principal continental lineages. Results support a high dispersal capability, with at least two independent continental sources for white-eyes of the region. An early (within 1.8 million years ago) expansion into the Indian Ocean may have originated either from Asia or Africa; the three resulting lineages show a disparate distribution consistent with considerable extinction following their arrival. Africa is supported as the origin of a later expansion into the region (within 1.2 million years ago). On two islands, a pair of Zosterops species derived from independent immigrations into the Indian Ocean co-occur or may have formerly co-occurred, providing strong support for their origin by double-island colonization rather than within-island (sympatric or microallopatric) speciation. On Mauritius and La Reunion, phylogenetic placement of sympatric white-eyes allow us to rule out a scenario in which independent within-island speciation occurred on both islands; one of the species pairs must have arisen by double colonization, while the other pair is likely to have arisen by the same mechanism. Long-distance immigration therefore appears to be responsible for much of the region's white-eye diversity. Independent immigrations into the region have resulted in lineages with mutually exclusive distributions and it seems likely that competition with congeneric species, rather than arrival frequency, may limit present-day diversity.
Resumo:
Moist convection is well known to be generally more intense over continental than maritime regions, with larger updraft velocities, graupel, and lightning production. This study explores the transition from maritime to continental convection by comparing the trends in Tropical Rainfall Measuring Mission (TRMM) radar and microwave (37 and 85 GHz) observations over islands of increasing size to those simulated by a cloud-resolving model. The observed storms were essentially maritime over islands of <100 km2 and continental over islands >10 000 km2, with a gradual transition in between. Equivalent radar and microwave quantities were simulated from cloud-resolving runs of the Weather Research and Forecasting model via offline radiation codes. The model configuration was idealized, with islands represented by regions of uniform surface heat flux without orography, using a range of initial sounding conditions without strong horizontal winds or aerosols. Simulated storm strength varied with initial sounding, as expected, but also increased sharply with island size in a manner similar to observations. Stronger simulated storms were associated with higher concentrations of large hydrometeors. Although biases varied with different ice microphysical schemes, the trend was similar for all three schemes tested and was also seen in 2D and 3D model configurations. The successful reproduction of the trend with such idealized forcing supports previous suggestions that mesoscale variation in surface heating—rather than any difference in humidity, aerosol, or other aspects of the atmospheric state—is the main reason that convection is more intense over continents and large islands than over oceans. Some dynamical storm aspects, notably the peak rainfall and minimum surface pressure low, were more sensitive to surface forcing than to the atmospheric sounding or ice scheme. Large hydrometeor concentrations and simulated microwave and radar signatures, however, were at least as sensitive to initial humidity levels as to surface forcing and were more sensitive to the ice scheme. Issues with running the TRMM simulator on 2D simulations are discussed, but they appear to be less serious than sensitivities to model microphysics, which were similar in 2D and 3D. This supports the further use of 2D simulations to economically explore modeling uncertainties.
Resumo:
Pathogenicity islands (PAIs) were first described in uropathogenic E. coli. They are now defined as regions of DNA that contain virulence genes and are present in the genome of pathogenic strains, but absent from or only rarely present in non-pathogenic variants of the same or related strains. Other features include a variable G+C content, distinct boundaries from the rest of the genome and the presence of genes related to mobile elements such as insertion sequences, integrases and transposases. Although PAIs have now been described in a wide range of both plant and animal pathogens it has become evident that the general features of PAIs are displayed by a number of regions of DNA with functions other than pathogenicity, such as symbiosis and antibiotic resistance, and the general term genomic islands has been adopted. This review will describe a range of genomic islands in plant pathogenic bacteria including those that carry effector genes, phytotoxins and the type III protein secretion cluster. The review will also consider some medically important bacteria in order to discuss the range, acquisition and stabilization of genomic islands.