951 resultados para Air-sea interactions
Resumo:
General circulation models predict a rapid decrease in sea ice extent with concurrent increases in near surface air temperature and precipitation in the Arctic over the 21st century. This has led to suggestions that some Arctic land ice masses may experience an increase in accumulation due to enhanced evaporation from a seasonally sea ice free Arctic Ocean. To investigate the impact of this phenomenon on Greenland ice sheet climate and surface mass balance (SMB) a regional climate model, HadRM3, was used to force an insolation-temperature melt SMB model. A set of experiments designed to investigate the role of sea ice independently from sea surface temperature (SST) forcing are described. In the warmer and wetter SI + SST simulation Greenland experiences a 23% increase in winter SMB but 65% reduced summer SMB, resulting in a net decrease in the annual value. This study shows that sea ice decline contributes to the increased winter balance, causing 25% of the increase in winter accumulation; this is largest in eastern Greenland as the result of increased evaporation in the Greenland Sea. These results indicate that the seasonal cycle of Greenland's SMB will increase dramatically as global temperatures increase, with the largest changes in temperature and precipitation occurring in winter. This demonstrates that the accurate prediction of changes in sea ice cover is important for predicting Greenland SMB and ice sheet evolution.
Resumo:
A convection-permitting local-area model was used to simulate a cold air outbreak crossing from the Norwegian Sea into the Atlantic Ocean near Scotland. A control model run based on an operational configuration of the Met Office UKV high-resolution (1.5 km grid spacing) NWP model was compared to satellite, aircraft and radar data. While the control model captured the large-scale features of the synoptic situation, it was not able to reproduce the shallow (<1.5 km) stratiform layer to the north of the open cellular convection. Liquid water paths were found to be too low in both the stratiform and convective cloud regions. Sensitivity analyses including a modified boundary-layer diagnosis to generate a more well-mixed boundary layer and inhibition of ice formation to lower temperatures improved cloud morphology and comparisons with observational data. Copyright © 2013 Royal Meteorological Society and British Crown Copyright, the Met Office
Resumo:
During the last century, global climate has been warming, and projections indicate that such a warming is likely to continue over coming decades. Most of the extra heat is stored in the ocean, resulting in thermal expansion of seawater and global mean sea level rise. Previous studies have shown that after CO2 emissions cease or CO2 concentration is stabilized, global mean surface air temperature stabilizes or decreases slowly, but sea level continues to rise. Using idealized CO2 scenario simulations with a hierarchy of models including an AOGCM and a step-response model, the authors show how the evolution of thermal expansion can be interpreted in terms of the climate energy balance and the vertical profile of ocean warming. Whereas surface temperature depends on cumulative CO2 emissions, sea level rise due to thermal expansion depends on the time profile of emissions. Sea level rise is smaller for later emissions, implying that targets to limit sea level rise would need to refer to the rate of emissions, not only to the time integral. Thermal expansion is in principle reversible, but to halt or reverse it quickly requires the radiative forcing to be reduced substantially, which is possible on centennial time scales only by geoengineering. If it could be done, the results indicate that heat would leave the ocean more readily than it entered, but even if thermal expansion were returned to zero, the geographical pattern of sea level would be altered. Therefore, despite any aggressive CO2 mitigation, regional sea level change is inevitable.
Resumo:
There are significant discrepancies between observational datasets of Arctic sea ice concentrations covering the last three decades, which result in differences of over 20% in Arctic summer sea ice extent/area and 5%–10% in winter. Previous modeling studies have shown that idealized sea ice anomalies have the potential for making a substantial impact on climate. In this paper, this theory is further developed by performing a set of simulations using the third Hadley Centre Coupled Atmospheric Model (HadAM3). The model was driven with monthly climatologies of sea ice fractions derived from three of these records to investigate potential implications of sea ice inaccuracies for climate simulations. The standard sea ice climatology from the Met Office provided a control. This study focuses on the effects of actual inaccuracies of concentration retrievals, which vary spatially and are larger in summer than winter. The smaller sea ice discrepancies in winter have a much larger influence on climate than the much greater summer sea ice differences. High sensitivity to sea ice prescription was observed, even though no SST feedbacks were included. Significant effects on surface fields were observed in the Arctic, North Atlantic, and North Pacific. Arctic average surface air temperature anomalies in winter vary by 2.5°C, and locally exceed 12°C. Arctic mean sea level pressure varies by up to 5 mb locally. Anomalies extend to 45°N over North America and Eurasia but not to lower latitudes, and with limited changes in circulation above the boundary layer. No statistically significant impact on climate variability was simulated, in terms of the North Atlantic Oscillation. Results suggest that the uncertainty in summer sea ice prescription is not critical but that winter values require greater accuracy, with the caveats that the influences of ocean–sea ice feedbacks were not included in this study.
Resumo:
The EU FP7 Project MEGAPOLI: "Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation" (http://megapoli.info) brings together leading European research groups, state-of-the-art scientific tools and key players from non-European countries to investigate the interactions among megacities, air quality and climate. MEGAPOLI bridges the spatial and temporal scales that connect local emissions, air quality and weather with global atmospheric chemistry and climate. The suggested concept of multi-scale integrated modelling of megacity impact on air quality and climate and vice versa is discussed in the paper. It requires considering different spatial and temporal dimensions: time scales from seconds and hours (to understand the interaction mechanisms) up to years and decades (to consider the climate effects); spatial resolutions: with model down- and up-scaling from street- to global-scale; and two-way interactions between meteorological and chemical processes.
Resumo:
In polar oceans, seawater freezes to form a layer of sea ice of several metres thickness that can cover up to 8% of the Earth’s surface. The modelled sea ice cover state is described by thickness and orientational distribution of interlocking, anisotropic diamond-shaped ice floes delineated by slip lines, as supported by observation. The purpose of this study is to develop a set of equations describing the mean-field sea ice stresses that result from interactions between the ice floes and the evolution of the ice floe orientation, which are simple enough to be incorporated into a climate model. The sea ice stress caused by a deformation of the ice cover is determined by employing an existing kinematic model of ice floe motion, which enables us to calculate the forces acting on the ice floes due to crushing into and sliding past each other, and then by averaging over all possible floe orientations. We describe the orientational floe distribution with a structure tensor and propose an evolution equation for this tensor that accounts for rigid body rotation of the floes, their apparent re-orientation due to new slip line formation, and change of shape of the floes due to freezing and melting. The form of the evolution equation proposed is motivated by laboratory observations of sea ice failure under controlled conditions. Finally, we present simulations of the evolution of sea ice stress and floe orientation for several imposed flow types. Although evidence to test the simulations against is lacking, the simulations seem physically reasonable.
Resumo:
New reconstructions of changing vegetation patterns in the Mediterranean-Black Sea Corridor since the Last Glacial Maximum are being produced by an improved biomisation scheme that uses both pollen and plant macrofossil data, in conjunction. Changes in fire regimes over the same interval will also be reconstructed using both microscopic and macroscopic charcoal remains. These reconstructions will allow a diagnosis of the interactions between climate, fire and vegetation on millennial timescales, and will also help to clarify the role of coastline and other geomorphic changes, salinity and impacts of human activities in this region. These new data sets are being produced as a result of collaboration between the Palynology Working Group (WG-2) within the IGCP-521 project and the international Palaeovegetation Mapping Project (BIOME 6000). The main objective of this paper is to present the goals of this cooperation, methodology, including limitations and planned improvements, and to show the initial results of some applications.
Resumo:
Five paired global climate model experiments, one with an ice pack that only responds thermodynamically (TI) and one including sea-ice dynamics (DI), were used to investigate the sensitivity of Arctic climates to sea-ice motion. The sequence of experiments includes situations in which the Arctic was both considerably colder (Glacial Inception, ca 115,000 years ago) and considerably warmer (3 × CO2) than today. Sea-ice motion produces cooler anomalies year-round than simulations without ice dynamics, resulting in reduced Arctic warming in warm scenarios and increased Arctic cooling in cold scenarios. These changes reflect changes in atmospheric circulation patterns: the DI simulations favor outflow of Arctic air and sea ice into the North Atlantic by promoting cyclonic circulation centered over northern Eurasia, whereas the TI simulations favor southerly inflow of much warmer air from the North Atlantic by promoting cyclonic circulation centered over Greenland. The differences between the paired simulations are sufficiently large to produce different vegetation cover over >19% of the land area north of 55°N, resulting in changes in land-surface characteristics large enough to have an additional impact on climate. Comparison of the DI and TI experiments for the mid-Holocene (6000 years ago) with paleovegetation reconstructions suggests the incorporation of sea-ice dynamics yields a more realistic simulation of high-latitude climates. The spatial pattern of sea-ice anomalies in the warmer-than-modern DI experiments strongly resembles the observed Arctic Ocean sea-ice dipole structure in recent decades, consistent with the idea that greenhouse warming is already impacting the high-northern latitudes.
Resumo:
Over Arctic sea ice, pressure ridges and floe andmelt pond edges all introduce discrete obstructions to the flow of air or water past the ice and are a source of form drag. In current climate models form drag is only accounted for by tuning the air–ice and ice–ocean drag coefficients, that is, by effectively altering the roughness length in a surface drag parameterization. The existing approach of the skin drag parameter tuning is poorly constrained by observations and fails to describe correctly the physics associated with the air–ice and ocean–ice drag. Here, the authors combine recent theoretical developments to deduce the total neutral form drag coefficients from properties of the ice cover such as ice concentration, vertical extent and area of the ridges, freeboard and floe draft, and the size of floes and melt ponds. The drag coefficients are incorporated into the Los Alamos Sea Ice Model (CICE) and show the influence of the new drag parameterization on the motion and state of the ice cover, with the most noticeable being a depletion of sea ice over the west boundary of the Arctic Ocean and over the Beaufort Sea. The new parameterization allows the drag coefficients to be coupled to the sea ice state and therefore to evolve spatially and temporally. It is found that the range of values predicted for the drag coefficients agree with the range of values measured in several regions of the Arctic. Finally, the implications of the new form drag formulation for the spinup or spindown of the Arctic Ocean are discussed.
Resumo:
Sea ice plays a crucial role in the earth's energy and water budget and substantially impacts local and remote atmospheric and oceanic circulations. Predictions of Arctic sea ice conditions a few months to a few years in advance could be of interest for stakeholders. This article presents a review of the potential sources of Arctic sea ice predictability on these timescales. Predictability mainly originates from persistence or advection of sea ice anomalies, interactions with the ocean and atmosphere and changes in radiative forcing. After estimating the inherent potential predictability limit with state-of-the-art models, current sea ice forecast systems are described, together with their performance. Finally, some challenges and issues in sea ice forecasting are presented, along with suggestions for future research priorities.
Resumo:
Time series of global and regional mean Surface Air Temperature (SAT) anomalies are a common metric used to estimate recent climate change. Various techniques can be used to create these time series from meteorological station data. The degree of difference arising from using five different techniques, based on existing temperature anomaly dataset techniques, to estimate Arctic SAT anomalies over land and sea ice were investigated using reanalysis data as a testbed. Techniques which interpolated anomalies were found to result in smaller errors than non-interpolating techniques relative to the reanalysis reference. Kriging techniques provided the smallest errors in estimates of Arctic anomalies and Simple Kriging was often the best kriging method in this study, especially over sea ice. A linear interpolation technique had, on average, Root Mean Square Errors (RMSEs) up to 0.55 K larger than the two kriging techniques tested. Non-interpolating techniques provided the least representative anomaly estimates. Nonetheless, they serve as useful checks for confirming whether estimates from interpolating techniques are reasonable. The interaction of meteorological station coverage with estimation techniques between 1850 and 2011 was simulated using an ensemble dataset comprising repeated individual years (1979-2011). All techniques were found to have larger RMSEs for earlier station coverages. This supports calls for increased data sharing and data rescue, especially in sparsely observed regions such as the Arctic.
Resumo:
North Sea Archaeologies traces the way people engaged with the North Sea from the end of the last ice age, around 10,000 BC, to the close of the Middle Ages, about AD 1500, drawing upon archaeological research from many countries, including the UK, Netherlands, Germany, Denmark, Sweden, Norway, Belgium, and France. It addresses topics which include the first interactions of people with the emerging North Sea, the origin and development of fishing, the creation of coastal landscapes, the importance of islands and archipelagos, the development of seafaring ships and their use by early seafarers and pirates, and the treatment of boats and ships at the end of their useful lives. The study offers a ‘maritime turn’ in Archaeology through the investigation of aspects of human behaviour that have been, to various extents, disregarded, overlooked, or ignored in archaeological studies of the land. The study concludes that the relationship between humans and the sea challenges the frequently invoked dichotomy between pre-modernity and modernity, since many ancient beliefs, superstitions, and practices linked to seafaring and engagement with the sea are still widespread in the modern era.
Resumo:
North Sea Archaeologies traces the way people engaged with the North Sea from the end of the last ice age, around 10,000 BC, to the close of the Middle Ages, about AD 1500, drawing upon archaeological research from many countries, including the UK, Netherlands, Germany, Denmark, Sweden, Norway, Belgium, and France. It addresses topics which include the first interactions of people with the emerging North Sea, the origin and development of fishing, the creation of coastal landscapes, the importance of islands and archipelagos, the development of seafaring ships and their use by early seafarers and pirates, and the treatment of boats and ships at the end of their useful lives. The study offers a ‘maritime turn’ in Archaeology through the investigation of aspects of human behaviour that have been, to various extents, disregarded, overlooked, or ignored in archaeological studies of the land. The study concludes that the relationship between humans and the sea challenges the frequently invoked dichotomy between pre-modernity and modernity, since many ancient beliefs, superstitions, and practices linked to seafaring and engagement with the sea are still widespread in the modern era.
Resumo:
The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance of including a more realistic treatment of aerosol–cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex aerosol schemes.
Resumo:
The advance of the onset of the Indian monsoon is here explained in terms of a balance between the low-level monsoon flow and an over-running intrusion of mid-tropospheric dry air. The monsoon advances, over a period of about 6 weeks, from the south of the country to the northwest. Given that the low-level monsoon winds are westerly or southwesterly, and the midlevel winds northwesterly, the monsoon onset propagates upwind relative to midlevel flow, and perpendicular to the low-level flow, and is not directly caused by moisture flux toward the northwest. Lacking a conceptual model for the advance means that it has been hard to understand and correct known biases in weather and climate prediction models. The mid-level northwesterlies form a wedge of dry air that is deep in the far northwest of India and over-runs the monsoon flow. The dry layer is moistened from below by shallow cumulus and congestus clouds, so that the profile becomes much closer to moist adiabatic, and the dry layer is much shallower in the vertical, toward the southeast of India. The profiles associated with this dry air show how the most favourable environment for deep convection occurs in the south, and onset occurs here first. As the onset advances across India, the advection of moisture from the Arabian Sea becomes stronger, and the mid-level dry air is increasingly moistened from below. This increased moistening makes the wedge of dry air shallower throughout its horizontal extent, and forces the northern limit of moist convection to move toward the northwest. Wetting of the land surface by rainfall will further reinforce the north-westward progression, by sustaining the supply of boundary layer moisture and shallow cumulus. The local advance of the monsoon onset is coincident with weakening of the mid-level northwesterlies, and therefore weakened mid-level dry advection.