978 resultados para Advanced Transaction Models
Resumo:
Several drugs and their associations are being used for adjuvant or complementary chemotherapy with the aim of improving results of gastric cancer treatment. The objective of this study was to verify the impact of these drugs on nutrition and on survival rate after radical treatment of 53 patients with gastric cancer in stage III of the TNM classification. A control group including 28 patients who had only undergone radical resection was compared to a group of 25 patients who underwent the same operative technique followed by adjuvant polychemotherapy with FAM (5-fluorouracil, Adriamycin, and mitomycin C). In this latter group, chemotherapy toxicity in relation to hepatic, renal, cardiologic, neurological, hematologic, gastrointestinal, and dermatological functions was also studied. There was no significant difference on admission between both groups in relation to gender, race, macroscopic tumoral type of tumor according to the Borrmann classification, location of the tumor in the stomach, length of the gastric resection, or response to cutaneous tests on delayed sensitivity. Chemotherapy was started on average, 2.3 months following surgical treatment. Clinical and laboratory follow-up of all patients continued for 5 years. The following conclusions were reached: 1) The nutritional status and incidence of gastrointestinal manifestation were similar in both groups; 2) There was no occurrence of cardiac, renal, neurological, or hepatic toxicity or death due to the chemotherapeutic method per se; 3) Dermatological alterations and hematological toxicity occurred exclusively in patients who underwent polychemotherapy; 4) There was no significant difference between the rate and site of tumoral recurrence, the disease-free interval, or the survival rate of both study groups; 5) Therefore, we concluded, after a 5-year follow-up, chemotherapy with the FAM regimen did not increase the survival rate.
Resumo:
Contém resumo
Resumo:
The impact of clinical, pathologic, and surgical variables on the postoperative morbidity, mortality, and survival of patients undergoing extended resections of colon carcinoma were evaluated. METHODS: The medical records of 95 patients who underwent extended resections for colon carcinoma between 1953 and 1996 were reviewed. In all cases, in addition to colectomy, 1 or more organs and/or structures were resected en bloc due to a macroscopically based suspicion of tumor invasion. The clinical, pathologic, and surgical parameters were analyzed. Overall survival rates were analyzed according to the method of Kaplan and Meier. Multivariate analysis was performed using the Cox proportional hazards model. RESULTS: Eighty-six patients were treated by curative surgeries and the remaining by palliative resections. Invasion of the organs and/or adjacent structures and regional lymph nodes was found microscopically in 48 and 31 patients, respectively. The median follow-up without postoperative mortality was 47.7 months. The 5-year overall survival rates was 52.6%. The 5-year overall survival rates for patients undergoing curative and palliative surgeries was 58.3% and 0%, respectively. The mean survival time in the palliative surgery group was 3.1 months. Multivariate analysis showed that Karnofsky performance status was strongly related to the risk of postoperative complications (P = .01), and postoperative deaths were associated with the type of surgery and Karnofsky performance status at the time of admission (P = .001). CONCLUSIONS: Some patients with locally advanced colon adenocarcinomas undergoing extended resections have a 5-year overall survival rates of 58.3%. Patients could benefit from palliative-intent procedures, but these measures should cautiously be indicated and avoided in patients with low Karnofsky performance status due to high rates of postoperative mortality and poor survival.
Resumo:
Composite materials have a complex behavior, which is difficult to predict under different types of loads. In the course of this dissertation a methodology was developed to predict failure and damage propagation of composite material specimens. This methodology uses finite element numerical models created with Ansys and Matlab softwares. The methodology is able to perform an incremental-iterative analysis, which increases, gradually, the load applied to the specimen. Several structural failure phenomena are considered, such as fiber and/or matrix failure, delamination or shear plasticity. Failure criteria based on element stresses were implemented and a procedure to reduce the stiffness of the failed elements was prepared. The material used in this dissertation consist of a spread tow carbon fabric with a 0°/90° arrangement and the main numerical model analyzed is a 26-plies specimen under compression loads. Numerical results were compared with the results of specimens tested experimentally, whose mechanical properties are unknown, knowing only the geometry of the specimen. The material properties of the numerical model were adjusted in the course of this dissertation, in order to find the lowest difference between the numerical and experimental results with an error lower than 5% (it was performed the numerical model identification based on the experimental results).
Resumo:
Field lab: Business project
Resumo:
We intend to study the algebraic structure of the simple orthogonal models to use them, through binary operations as building blocks in the construction of more complex orthogonal models. We start by presenting some matrix results considering Commutative Jordan Algebras of symmetric matrices, CJAs. Next, we use these results to study the algebraic structure of orthogonal models, obtained by crossing and nesting simpler ones. Then, we study the normal models with OBS, which can also be orthogonal models. We intend to study normal models with OBS (Orthogonal Block Structure), NOBS (Normal Orthogonal Block Structure), obtaining condition for having complete and suffcient statistics, having UMVUE, is unbiased estimators with minimal covariance matrices whatever the variance components. Lastly, see ([Pereira et al. (2014)]), we study the algebraic structure of orthogonal models, mixed models whose variance covariance matrices are all positive semi definite, linear combinations of known orthogonal pairwise orthogonal projection matrices, OPOPM, and whose least square estimators, LSE, of estimable vectors are best linear unbiased estimator, BLUE, whatever the variance components, so they are uniformly BLUE, UBLUE. From the results of the algebraic structure we will get explicit expressions for the LSE of these models.
Resumo:
Both culture coverage and digital journalism are contemporary phenomena that have undergone several transformations within a short period of time. Whenever the media enters a period of uncertainty such as the present one, there is an attempt to innovate in order to seek sustainability, skip the crisis or find a new public. This indicates that there are new trends to be understood and explored, i.e., how are media innovating in a digital environment? Not only does the professional debate about the future of journalism justify the need to explore the issue, but so do the academic approaches to cultural journalism. However, none of the studies so far have considered innovation as a motto or driver and tried to explain how the media are covering culture, achieving sustainability and engaging with the readers in a digital environment. This research examines how European media which specialize in culture or have an important cultural section are innovating in a digital environment. Specifically, we see how these innovation strategies are being taken in relation to the approach to culture and dominant cultural areas, editorial models, the use of digital tools for telling stories, overall brand positioning and extensions, engagement with the public and business models. We conducted a mixed methods study combining case studies of four media projects, which integrates qualitative web features and content analysis, with quantitative web content analysis. Two major general-interest journalistic brands which started as physical newspapers – The Guardian (London, UK) and Público (Lisbon, Portugal) – a magazine specialized in international affairs, culture and design – Monocle (London, UK) – and a native digital media project that was launched by a cultural organization – Notodo, by La Fábrica – were the four case studies chosen. Findings suggest, on one hand, that we are witnessing a paradigm shift in culture coverage in a digital environment, challenging traditional boundaries related to cultural themes and scope, angles, genres, content format and delivery, engagement and business models. Innovation in the four case studies lies especially along the product dimensions (format and content), brand positioning and process (business model and ways to engage with users). On the other hand, there are still perennial values that are crucial to innovation and sustainability, such as commitment to journalism, consistency (to the reader, to brand extensions and to the advertiser), intelligent differentiation and the capability of knowing what innovation means and how it can be applied, since this thesis also confirms that one formula doesn´t suit all. Changing minds, exceeding cultural inertia and optimizing the memory of the websites, looking at them as living, organic bodies, which continuously interact with the readers in many different ways, and not as a closed collection of articles, are still the main challenges for some media.
Resumo:
This work project is based on the MIES (Map of Innovation and Social Entrepreneurship in Portugal) database and it aims to understand the characteristics of social business models in the context of the portuguese market, by determining whether they follow the proposed characteristics by John Elkington and Pamela Hartigan, and then adding to their matrix. Furthermore, it tries to determine success patterns by comparing a group of successful social ventures with a group of less successful ones, with the objective of increasing the knowledge of social entrepreneurship as it applies to Portugal and provide a framework for future study.
Resumo:
Grasslands in semi-arid regions, like Mongolian steppes, are facing desertification and degradation processes, due to climate change. Mongolia’s main economic activity consists on an extensive livestock production and, therefore, it is a concerning matter for the decision makers. Remote sensing and Geographic Information Systems provide the tools for advanced ecosystem management and have been widely used for monitoring and management of pasture resources. This study investigates which is the higher thematic detail that is possible to achieve through remote sensing, to map the steppe vegetation, using medium resolution earth observation imagery in three districts (soums) of Mongolia: Dzag, Buutsagaan and Khureemaral. After considering different thematic levels of detail for classifying the steppe vegetation, the existent pasture types within the steppe were chosen to be mapped. In order to investigate which combination of data sets yields the best results and which classification algorithm is more suitable for incorporating these data sets, a comparison between different classification methods were tested for the study area. Sixteen classifications were performed using different combinations of estimators, Landsat-8 (spectral bands and Landsat-8 NDVI-derived) and geophysical data (elevation, mean annual precipitation and mean annual temperature) using two classification algorithms, maximum likelihood and decision tree. Results showed that the best performing model was the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), using the decision tree. For maximum likelihood, the model that incorporated Landsat-8 bands with mean annual precipitation (Model 5) and the one that incorporated Landsat-8 bands with mean annual precipitation and mean annual temperature (Model 13), achieved the higher accuracies for this algorithm. The decision tree models consistently outperformed the maximum likelihood ones.
Resumo:
As huge amounts of data become available in organizations and society, specific data analytics skills and techniques are needed to explore this data and extract from it useful patterns, tendencies, models or other useful knowledge, which could be used to support the decision-making process, to define new strategies or to understand what is happening in a specific field. Only with a deep understanding of a phenomenon it is possible to fight it. In this paper, a data-driven analytics approach is used for the analysis of the increasing incidence of fatalities by pneumonia in the Portuguese population, characterizing the disease and its incidence in terms of fatalities, knowledge that can be used to define appropriate strategies that can aim to reduce this phenomenon, which has increased more than 65% in a decade.
Resumo:
This paper aims at developing a collision prediction model for three-leg junctions located in national roads (NR) in Northern Portugal. The focus is to identify factors that contribute for collision type crashes in those locations, mainly factors related to road geometric consistency, since literature is scarce on those, and to research the impact of three modeling methods: generalized estimating equations, random-effects negative binomial models and random-parameters negative binomial models, on the factors of those models. The database used included data published between 2008 and 2010 of 177 three-leg junctions. It was split in three groups of contributing factors which were tested sequentially for each of the adopted models: at first only traffic, then, traffic and the geometric characteristics of the junctions within their area of influence; and, lastly, factors which show the difference between the geometric characteristics of the segments boarding the junctionsâ area of influence and the segment included in that area were added. The choice of the best modeling technique was supported by the result of a cross validation made to ascertain the best model for the three sets of researched contributing factors. The models fitted with random-parameters negative binomial models had the best performance in the process. In the best models obtained for every modeling technique, the characteristics of the road environment, including proxy measures for the geometric consistency, along with traffic volume, contribute significantly to the number of collisions. Both the variables concerning junctions and the various national highway segments in their area of influence, as well as variations from those characteristics concerning roadway segments which border the already mentioned area of influence have proven their relevance and, therefore, there is a rightful need to incorporate the effect of geometric consistency in the three-leg junctions safety studies.
Resumo:
By taking advantage of the appropriate use of cement and polymer based materials and advanced computational tools, a pre-fabricated affordable house was built in a modular system. Modular system refers to the complete structure that is built-up by assembling pre-fabricated sandwich panels composed of steel fibre reinforced self-compacting concrete (SFRSCC) outer layers that are connected by innovative glass fibre reinforced polymer (GFRP) connectors, resulting in a panel with adequate structural, acoustic, and thermal insulation properties. The modular house was prepared for a typical family of six members, but its living area can be easily increased by assembling other pre-fabricated elements. The speed of construction and the cost of the constructive elements make these houses competitive when compared to traditional solutions. In this paper the relevant research subjacent to this project (LEGOUSE) is briefly described, as well as the construction process of the built real scale prototype.
Resumo:
This article describes the main approaches adopted in a study focused on planning industrial estates on a sub-regional scale. The study was supported by an agent-based model, using firms as agents to assess the attractiveness of industrial estates. The simulation was made by the NetLogo toolkit and the environment represents a geographical space. Three scenarios and four hypotheses were used in the simulation to test the impact of different policies on the attractiveness of industrial estates. Policies were distinguished by the level of municipal coordination at which they were implemented and by the type of intervention. In the model, the attractiveness of industrial estates was based on the level of facilities, amenities, accessibility and on the price of land in each industrial estate. Firms are able to move and relocate whenever they find an attractive estate. The relocating firms were selected by their size, location and distance to an industrial estate. Results show that a coordinated policy among municipalities is the most efficient policy to promote advanced-qualified estates. In these scenarios, it was observed that more industrial estates became attractive, more firms were relocated and more vacant lots were occupied. Furthermore, the results also indicate that the promotion of widespread industrial estates with poor-quality infrastructures and amenities is an inefficient policy to attract firms.
Resumo:
The structural analysis involves the definition of the model and selection of the analysis type. The model should represent the stiffness, the mass and the loads of the structure. The structures can be represented using simplified models, such as the lumped mass models, and advanced models resorting the Finite Element Method (FEM) and Discrete Element Method (DEM). Depending on the characteristics of the structure, different types of analysis can be used such as limit analysis, linear and non-linear static analysis and linear and non-linear dynamic analysis. Unreinforced masonry structures present low tensile strength and the linear analyses seem to not be adequate for assessing their structural behaviour. On the other hand, the static and dynamic non-linear analyses are complex, since they involve large time computational requirements and advanced knowledge of the practitioner. The non-linear analysis requires advanced knowledge on the material properties, analysis tools and interpretation of results. The limit analysis with macro-blocks can be assumed as a more practical method in the estimation of maximum load capacity of structure. Furthermore, the limit analysis require a reduced number of parameters, which is an advantage for the assessment of ancient and historical masonry structures, due to the difficult in obtaining reliable data.
Resumo:
Archeology and related areas have a special interest on cultural heritage sites since they provide valuable information about past civilizations. However, the ancient buildings present in these sites are commonly found in an advanced state of degradation which difficult the professional/expert analysis. Virtual reconstructions of such buildings aim to provide a digital insight of how these historical places could have been in ancient times. Moreover, the visualization of such models has been explored by some Augmented Reality (AR) systems capable of providing support to experts. Their compelling and appealing environments have also been applied to promote the social and cultural participation of general public. The existing AR solutions regarding this thematic rarely explore the potential of realism, due to the following lacks: the exploration of mixed environments is usually only supported for indoors or outdoors, not both in the same system; the adaptation of the illumination conditions to the reconstructed structures is rarely addressed causing a decrease of credibility. MixAR [1] is a system concerned with those challenges, aiming to provide the visualization of virtual buildings augmented upon real ruins, allowing soft transitions among its interiors and exteriors and using relighting techniques for a faithful interior illumination, while the user freely moves in a given cultural heritage site, carrying a mobile unit. Regarding the focus of this paper, we intend to report the current state of MixAR mobile unit prototype, which allows visualizing virtual buildings – properly aligned with real-world structures – based on user's location, during outdoor navigation. In order to evaluate the prototype performance, a set of tests were made using virtual models with different complexities.