978 resultados para Adipose tissues Differentiation
Resumo:
OBJECTIVES: Adipose-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (MSCs) are multipotent adult stem cells with potential for use in cartilage tissue engineering. We hypothesized that these cells show distinct responses to different chondrogenic culture conditions and extracellular matrices, illustrating important differences between cell types. METHODS: Human ASCs and MSCs were chondrogenically differentiated in alginate beads or a novel scaffold of reconstituted native cartilage-derived matrix with a range of growth factors, including dexamethasone, transforming growth factor beta3, and bone morphogenetic protein 6. Constructs were analyzed for gene expression and matrix synthesis. RESULTS: Chondrogenic growth factors induced a chondrocytic phenotype in both ASCs and MSCs in alginate beads or cartilage-derived matrix. MSCs demonstrated enhanced type II collagen gene expression and matrix synthesis as well as a greater propensity for the hypertrophic chondrocyte phenotype. ASCs had higher upregulation of aggrecan gene expression in response to bone morphogenetic protein 6 (857-fold), while MSCs responded more favorably to transforming growth factor beta3 (573-fold increase). CONCLUSIONS: ASCs and MSCs are distinct cell types as illustrated by their unique responses to growth factor-based chondrogenic induction. This chondrogenic induction is affected by the composition of the scaffold and the presence of serum.
Resumo:
Cellular therapies have recently employed the use of small RNA molecules, particularly microRNAs (miRNAs), to regulate various cellular processes that may be altered in disease states. In this study, we examined the effect of transient muscle-specific miRNA inhibition on the function of three-dimensional skeletal muscle cultures, or bioartificial muscles (BAMs). Skeletal myoblast differentiation in vitro is enhanced by inhibiting a proliferation-promoting miRNA (miR-133) expressed in muscle tissues. As assessed by functional force measurements in response to electrical stimulation at frequencies ranging from 0 to 20 Hz, peak forces exhibited by BAMs with miR-133 inhibition (anti-miR-133) were on average 20% higher than the corresponding negative control, although dynamic responses to electrical stimulation in miRNA-transfected BAMs and negative controls were similar to nontransfected controls. Immunostaining for alpha-actinin and myosin also showed more distinct striations and myofiber organization in anti-miR-133 BAMs, and fiber diameters were significantly larger in these BAMs over both the nontransfected and negative controls. Compared to the negative control, anti-miR-133 BAMs exhibited more intense nuclear staining for Mef2, a key myogenic differentiation marker. To our knowledge, this study is the first to demonstrate that miRNA mediation has functional effects on tissue-engineered constructs.
Resumo:
Tissue engineering of various musculoskeletal or cardiovascular tissues requires scaffolds with controllable mechanical anisotropy. However, native tissues also exhibit significant inhomogeneity in their mechanical properties, and the principal axes of anisotropy may vary with site or depth from the tissue surface. Thus, techniques to produce multilayered biomaterial scaffolds with controllable anisotropy may provide improved biomimetic properties for functional tissue replacements. In this study, poly(ε-caprolactone) scaffolds were electrospun onto a collecting electrode that was partially covered by rectangular or square shaped insulating masks. The use of a rectangular mask resulted in aligned scaffolds that were significantly stiffer in tension in the axial direction than the transverse direction at 0 strain (22.9 ± 1.3 MPa axial, 16.1 ± 0.9 MPa transverse), and at 0.1 strain (4.8 ± 0.3 MPa axial, 3.5 ± 0.2 MPa transverse). The unaligned scaffolds, produced using a square mask, did not show this anisotropy, with similar stiffness in the axial and transverse directions at 0 strain (19.7 ± 1.4 MPa axial, 20.8 ± 1.3 MPa transverse) and 0.1 strain (4.4 ± 0.2 MPa axial, 4.6 ± 0.3 MPa, transverse). Aligned scaffolds also induced alignment of adipose stem cells near the expected axis on aligned scaffolds (0.015 ± 0.056 rad), while on the unaligned scaffolds, their orientation showed more variation and was not along the expected axis (1.005 ± 0.225 rad). This method provides a novel means of creating multilayered electrospun scaffolds with controlled anisotropy for each layer, potentially providing a means to mimic the complex mechanical properties of various native tissues.
Resumo:
Regenerative medicine for complex tissues like limbs will require the provision or activation of precursors for different cell types, in the correct number, and with the appropriate instructions. These strategies can be guided by what is learned from spectacular events of natural limb or fin regeneration in urodele amphibians and teleost fish. Following zebrafish fin amputation, melanocyte stripes faithfully regenerate in tandem with complex fin structures. Distinct populations of melanocyte precursors emerge and differentiate to pigment regenerating fins, yet the regulation of their proliferation and patterning is incompletely understood. Here, we found that transgenic increases in active Ras dose-dependently hyperpigmented regenerating zebrafish fins. Lineage tracing and marker analysis indicated that increases in active Ras stimulated the in situ amplification of undifferentiated melanocyte precursors expressing mitfa and kita. Active Ras also hyperpigmented early fin regenerates of kita mutants, which are normally devoid of primary regeneration melanocytes, suppressing defects in precursor function and survival. By contrast, this protocol had no noticeable impact on pigmentation by secondary regulatory melanocyte precursors in late-stage kita regenerates. Our results provide evidence that Ras activity levels control the repopulation and expansion of adult melanocyte precursors after tissue loss, enabling the recovery of patterned melanocyte stripes during zebrafish appendage regeneration.
Resumo:
The small airways of the human lung undergo pathological changes in pulmonary disorders, such as chronic obstructive pulmonary disease (COPD), asthma, bronchiolitis obliterans and cystic fibrosis. These clinical problems impose huge personal and societal healthcare burdens. The changes, termed 'pathological airway remodeling', affect the epithelium, the underlying mesenchyme and the reciprocal trophic interactions that occur between these tissues. Most of the normal human airway is lined by a pseudostratified epithelium of ciliated cells, secretory cells and 6-30% basal cells, the proportion of which varies along the proximal-distal axis. Epithelial abnormalities range from hypoplasia (failure to differentiate) to basal- and goblet-cell hyperplasia, squamous- and goblet-cell metaplasia, dysplasia and malignant transformation. Mesenchymal alterations include thickening of the basal lamina, smooth muscle hyperplasia, fibrosis and inflammatory cell accumulation. Paradoxically, given the prevalence and importance of airway remodeling in lung disease, its etiology is poorly understood. This is due, in part, to a lack of basic knowledge of the mechanisms that regulate the differentiation, maintenance and repair of the airway epithelium. Specifically, little is known about the proliferation and differentiation of basal cells, a multipotent stem cell population of the pseudostratified airway epithelium. This Perspective summarizes what we know, and what we need to know, about airway basal cells to evaluate their contributions to normal and abnormal airway remodeling. We contend that exploiting well-described model systems using both human airway epithelial cells and the pseudostratified epithelium of the genetically tractable mouse trachea will enable crucial discoveries regarding the pathogenesis of airway disease.
Resumo:
The ability of diffuse reflectance spectroscopy to extract quantitative biological composition of tissues has been used to discern tissue types in both pre-clinical and clinical cancer studies. Typically, diffuse reflectance spectroscopy systems are designed for single-point measurements. Clinically, an imaging system would provide valuable spatial information on tissue composition. While it is feasible to build a multiplexed fiber-optic probe based spectral imaging system, these systems suffer from drawbacks with respect to cost and size. To address these we developed a compact and low cost system using a broadband light source with an 8-slot filter wheel for illumination and silicon photodiodes for detection. The spectral imaging system was tested on a set of tissue mimicking liquid phantoms which yielded an optical property extraction accuracy of 6.40 +/- 7.78% for the absorption coefficient (micro(a)) and 11.37 +/- 19.62% for the wavelength-averaged reduced scattering coefficient (micro(s)').
Resumo:
BACKGROUND: The lactogenic hormones prolactin (PRL) and placental lactogens (PL) play central roles in reproduction and mammary development. Their actions are mediated via binding to PRL receptor (PRLR), highly expressed in brown adipose tissue (BAT), yet their impact on adipocyte function and metabolism remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: PRLR knockout (KO) newborn mice were phenotypically characterized in terms of thermoregulation and their BAT differentiation assayed for gene expression studies. Derived brown preadipocyte cell lines were established to evaluate the molecular mechanisms involved in PRL signaling on BAT function. Here, we report that newborn mice lacking PRLR have hypotrophic BAT depots that express low levels of adipocyte nuclear receptor PPARgamma2, its coactivator PGC-1alpha, uncoupling protein 1 (UCP1) and the beta3 adrenoceptor, reducing mouse viability during cold challenge. Immortalized PRLR KO preadipocytes fail to undergo differentiation into mature adipocytes, a defect reversed by reintroduction of PRLR. That the effects of the lactogens in BAT are at least partly mediated by Insulin-like Growth Factor-2 (IGF-2) is supported by: i) a striking reduction in BAT IGF-2 expression in PRLR KO mice and in PRLR-deficient preadipocytes; ii) induction of cellular IGF-2 expression by PRL through JAK2/STAT5 pathway activation; and iii) reversal of defective differentiation in PRLR KO cells by exogenous IGF-2. CONCLUSIONS: Our findings demonstrate that the lactogens act in concert with IGF-2 to control brown adipocyte differentiation and growth. Given the prominent role of brown adipose tissue during the perinatal period, our results identified prolactin receptor signaling as a major player and a potential therapeutic target in protecting newborn mammals against hypothermia.
Resumo:
Brain tumors are typically resistant to conventional chemotherapeutics, most of which initiate apoptosis upstream of mitochondrial cytochrome c release. In this study, we demonstrate that directly activating apoptosis downstream of the mitochondria, with cytosolic cytochrome c, kills brain tumor cells but not normal brain tissue. Specifically, cytosolic cytochrome c is sufficient to induce apoptosis in glioblastoma and medulloblastoma cell lines. In contrast, primary neurons from the cerebellum and cortex are remarkably resistant to cytosolic cytochrome c. Importantly, tumor tissue from mouse models of both high-grade astrocytoma and medulloblastoma display hypersensitivity to cytochrome c when compared with surrounding brain tissue. This differential sensitivity to cytochrome c is attributed to high Apaf-1 levels in the tumor tissue compared with low Apaf-1 levels in the adjacent brain tissue. These differences in Apaf-1 abundance correlate with differences in the levels of E2F1, a previously identified activator of Apaf-1 transcription. ChIP assays reveal that E2F1 binds the Apaf-1 promoter specifically in tumor tissue, suggesting that E2F1 contributes to the expression of Apaf-1 in brain tumors. Together, these results demonstrate an unexpected sensitivity of brain tumors to postmitochondrial induction of apoptosis. Moreover, they raise the possibility that this phenomenon could be exploited therapeutically to selectively kill brain cancer cells while sparing the surrounding brain parenchyma.
Resumo:
Generation of functional cells from human pluripotent stem cells (PSCs) through in vitro differentiation is a promising approach for drug screening and cell therapy. However, the observed large and unavoidable variation in the differentiation potential of different human embryonic stem cell (hESC)/induced PSC (iPSC) lines makes the selection of an appropriate cell line for the differentiation of a particular cell lineage difficult. Here, we report identification of WNT3 as a biomarker capable of predicting definitive endoderm (DE) differentiation potential of hESCs. We show that the mRNA level of WNT3 in hESCs correlates with their DE differentiation efficiency. In addition, manipulations of hESCs through WNT3 knockdown or overexpression can respectively inhibit or promote DE differentiation in a WNT3 level-dependent manner. Finally, analysis of several hESC lines based on their WNT3 expression levels allowed accurate prediction of their DE differentiation potential. Collectively, our study supports the notion that WNT3 can serve as a biomarker for predicting DE differentiation potential of hESCs.
Resumo:
A large percentage of the population may be expected to experience painful symptoms or disability associated with intervertebral disc (IVD) degeneration - a condition characterized by diminished integrity of tissue components. Great interest exists in the use of autologous or allogeneic cells delivered to the degenerated IVD to promote matrix regeneration. Induced pluripotent stem cells (iPSCs), derived from a patient's own somatic cells, have demonstrated their capacity to differentiate into various cell types although their potential to differentiate into an IVD cell has not yet been demonstrated. The overall objective of this study was to assess the possibility of generating iPSC-derived nucleus pulposus (NP) cells in a mouse model, a cell population that is entirely derived from notochord. This study employed magnetic activated cell sorting (MACS) to isolate a CD24(+) iPSC subpopulation. Notochordal cell-related gene expression was analyzed in this CD24(+) cell fraction via real time RT-PCR. CD24(+) iPSCs were then cultured in a laminin-rich culture system for up to 28 days, and the mouse NP phenotype was assessed by immunostaining. This study also focused on producing a more conducive environment for NP differentiation of mouse iPSCs with addition of low oxygen tension and notochordal cell conditioned medium (NCCM) to the culture platform. iPSCs were evaluated for an ability to adopt an NP-like phenotype through a combination of immunostaining and biochemical assays. Results demonstrated that a CD24(+) fraction of mouse iPSCs could be retrieved and differentiated into a population that could synthesize matrix components similar to that in native NP. Likewise, the addition of a hypoxic environment and NCCM induced a similar phenotypic result. In conclusion, this study suggests that mouse iPSCs have the potential to differentiate into NP-like cells and suggests the possibility that they may be used as a novel cell source for cellular therapy in the IVD.
Resumo:
Intraoperative assessment of surgical margins is critical to ensuring residual tumor does not remain in a patient. Previously, we developed a fluorescence structured illumination microscope (SIM) system with a single-shot field of view (FOV) of 2.1 × 1.6 mm (3.4 mm2) and sub-cellular resolution (4.4 μm). The goal of this study was to test the utility of this technology for the detection of residual disease in a genetically engineered mouse model of sarcoma. Primary soft tissue sarcomas were generated in the hindlimb and after the tumor was surgically removed, the relevant margin was stained with acridine orange (AO), a vital stain that brightly stains cell nuclei and fibrous tissues. The tissues were imaged with the SIM system with the primary goal of visualizing fluorescent features from tumor nuclei. Given the heterogeneity of the background tissue (presence of adipose tissue and muscle), an algorithm known as maximally stable extremal regions (MSER) was optimized and applied to the images to specifically segment nuclear features. A logistic regression model was used to classify a tissue site as positive or negative by calculating area fraction and shape of the segmented features that were present and the resulting receiver operator curve (ROC) was generated by varying the probability threshold. Based on the ROC curves, the model was able to classify tumor and normal tissue with 77% sensitivity and 81% specificity (Youden's index). For an unbiased measure of the model performance, it was applied to a separate validation dataset that resulted in 73% sensitivity and 80% specificity. When this approach was applied to representative whole margins, for a tumor probability threshold of 50%, only 1.2% of all regions from the negative margin exceeded this threshold, while over 14.8% of all regions from the positive margin exceeded this threshold.
Resumo:
© 2015 Taylor & Francis Group, LLC.A characteristic immunopathology of human cancers is the induction of tumor antigen-specific T lymphocyte responses within solid tumor tissues. Current strategies for immune monitoring focus on the quantification of the density and differentiation status of tumor-infiltrating T lymphocytes; however, properties of the TCR repertoire - including antigen specificity, clonality, as well as its prognostic significance β remain elusive. In this study, we enrolled 28 gastric cancer patients and collected tumor tissues, adjacent normal mucosal tissues, and peripheral blood samples to study the landscape and compartmentalization of these patients’ TCR β repertoire by deep sequencing analyses. Our results illustrated antigen-driven expansion within the tumor compartment and the contracted size of shared clonotypes in mucosa and peripheral blood. Most importantly, the diversity of mucosal T lymphocytes could independently predict prognosis, which strongly underscores critical roles of resident mucosal T-cells in executing post-surgery immunosurveillance against tumor relapse.
Resumo:
Developmental signals in metazoans play critical roles in inducing cell differentiation from multipotent progenitors. The existing paradigm posits that the signals operate directly through their downstream transcription factors to activate expression of cell type-specific genes, which are the hallmark of cell identity. We have investigated the mechanism through which Wnt signaling induces osteoblast differentiation in an osteoblast-adipocyte bipotent progenitor cell line. Unexpectedly, Wnt3a acutely suppresses the expression of a large number of genes while inducing osteoblast differentiation. The suppressed genes include Pparg and Cebpa, which encode adipocyte-specifying transcription factors and suppression of which is sufficient to induce osteoblast differentiation. The large scale gene suppression induced by Wnt3a corresponds to a global decrease in histone acetylation, an epigenetic modification that is associated with gene activation. Mechanistically, Wnt3a does not alter histone acetyltransferase or deacetylase activities but, rather, decreases the level of acetyl-CoA in the nucleus. The Wnt-induced decrease in histone acetylation is independent of β-catenin signaling but, rather, correlates with suppression of glucose metabolism in the tricarboxylic acid cycle. Functionally, preventing histone deacetylation by increasing nucleocytoplasmic acetyl-CoA levels impairs Wnt3a-induced osteoblast differentiation. Thus, Wnt signaling induces osteoblast differentiation in part through histone deacetylation and epigenetic suppression of an alternative cell fate.
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
In dog thyroid cells, insulin or IGF-1 induces cell growth and is required for the mitogenic action of TSH through cyclic AMP, of EGF, and of phorbol esters. HGF per se stimulates cell proliferation and is thus the only full mitogenic agent. TSH and cAMP enhance, whereas EGF phorbol esters and HGF repress differentiation expression. In this study, we have investigated for each factor and regulatory cascade of the intermediate step of immediate early gene induction, that is, c-myc, c-jun, jun D, jun B, c-fos, fos B, fra-1, fra-2, and egr1; fra-1 and fra-2 expressions were very low. TSH or forskolin increased the levels of c-myc, jun B, jun D, c-fos, and fos B while decreasing those of c-jun and egr1. Phorbol myristate ester stimulated the expression of all the genes. EGF and HGF stimulated the expression of all the genes except jun D and for EGF fos B. All these effects were obtained in the presence and in the absence of insulin, which shows that insulin is not necessary for the effects of the mitogens on immediate early gene expression. The definition of the repertoire of early immediate genes inductible by the various growth cascades provides a framework for the analysis of gene expression in tumors. (1) Insulin was able to induce all the protooncogenes investigated except fos B. This suggests that fos B could be the factor missing for insulin to induce mitogenesis. (2) No characteristic pattern of immediate early gene expression has been observed for insulin, which induces cell hypertrophy and is permissive for the action of the other growth factors. These effects are therefore not accounted for by a specific immediate early gene expression. On the other hand, insulin clearly enhances the effects of TSH, phorbol ester, and EGF on c-myc, junB, and c-fos expression. This suggests that the effect of insulin on mitogenesis might result from quantitative differences in the transcription complexes formed. (3) c-myc, c-fos, and jun B mRNA induction by all stimulating agents, whether inducing cell hypertrophy, or growth and dedifferentiation, or growth and differentiation, suggests that, although these expressions are not sufficient, they may be necessary for the various growth responses of thyroid cells. (4) The inhibition of c-jun and egr1 mRNA expression, and the marked induction of jun D mRNA appear to be specific features of the TSH cAMP pathway. They might be related to its differentiating action. (5) fos B, which is induced by TSH, forskolin, phorbol ester, and HGF but not by insulin, could be involved in the mitogenic action of the former factors.