889 resultados para Adherens Junctions
Resumo:
According to current knowledge, sexual development of the apicomplexan parasite Neospora caninum takes place in the canine intestine. However, to date there is no information on the interaction between the parasite and the canine intestinal epithelium, and, next to the clinical and in vivo research tools, an in vitro model comprised of canine intestinal cells infected with N. caninum would be very helpful for investigations at the cellular level. Following the isolation of cells of neonatal canine duodenum and growth of cell cultures to monolayers for 5-6 days, canine intestinal epithelial cells were exposed to cell culture-derived N. caninum tachyzoites and bradyzoites. The host cells remained viable during in vitro culture for an average of 2 wk. During this time span, N. caninum was found to readily adhere to any surface area of these cells, but infection took mostly place at sites where microvilli-like structures were missing, e.g., at the cell periphery, with tachyzoites exhibiting at least 3-4 times increased invasive capacities compared to bradyzoites. Once intracellular, parasites resided within a parasitophorous vacuole, moved toward the vicinity of the nucleus and the more distal portion of the epithelial cells, and proliferated to form vacuoles of not more than 2-4 parasites, which were surrounded by numerous mitochondria. Immunofluorescence staining and TEM of infected cells showed that the expression of cytokeratins and the structural integrity of desmosomes and tight junctions were not notably altered during infection. Furthermore, no changes could be detected in the alkaline phosphatase activities in cell culture supernatants of infected and noninfected cells. Canine duodenal epithelial cell cultures represent a useful tool for future studies on the characteristics of the intestinal phases of N. caninum infection.
Resumo:
The self-assembly and redox-properties of two viologen derivatives, N-hexyl-N-(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-H) and N,N-bis(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-SH), immobilized on Au(111)-(1x1) macro-electrodes were investigated by cyclic voltammetry, surface enhanced infrared spectroscopy (SEIRAS) and in situ scanning tunneling microscopy (STM). Depending on the assembly conditions one could distinguish three different types of adlayers for both viologens: a low coverage disordered and an ordered striped phase of flat oriented molecules as well as a high coverage monolayer composed of tilted viologen moieties. Both molecules, HS-6V6-H and HS-6V6-SH, were successfully immobilized on Au(poly) nano-electrodes, which gave a well-defined redox-response in the lower pA–current range. An in situ STM configuration was employed to explore electron transport properties of single molecule junctions Au(T)|HS-6V6-SH(HS-6V6-H)|Au(S). The observed sigmoidal potential dependence, measured at variable substrate potential ES and at constant bias voltage (ET–ES), was attributed to electronic structure changes of the viologen moiety during the one-electron reduction/re-oxidation process V2+ V+. Tunneling experiments in asymmetric, STM-based junctions Au(T)-S-6V6-H|Au(S) revealed current (iT)–voltage (ET) curves with a maximum located at the equilibrium potential of the redox-process V2+ V+. The experimental iT–ET characteristics of the HS-6V6-H–modified tunneling junction were tentatively attributed to a sequential two-step electron transfer mechanism.
Resumo:
We report a combined experimental and theoretical investigation of the length dependence and anchor group dependence of the electrical conductance of a series of oligoyne molecular wires in single-molecule junctions with gold contacts. Experimentally, we focus on the synthesis and properties of diaryloligoynes with n = 1, 2, and 4 triple bonds and the anchor dihydrobenzo[b]thiophene (BT). For comparison, we also explored the aurophilic anchor group cyano (CN), amino (NH2), thiol (SH), and 4-pyridyl (PY). Scanning tunneling microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques are employed to investigate single-molecule conductance characteristics. The BT moiety is superior as compared to traditional anchoring groups investigated so far. BT-terminated oligoynes display a 100% probability of junction formation and possess conductance values which are the highest of the oligoynes studied and, moreover, are higher than other conjugated molecular wires of similar length. Density functional theory (DFT)-based calculations are reported for oligoynes with n = 1−4 triple bonds. Complete conductance traces and conductance distributions are computed for each family of molecules. The sliding of the anchor groups leads to oscillations in both the electrical conductance and the binding energies of the studied molecular wires. In agreement with experimental results, BT-terminated oligoynes are predicted to have a high electrical conductance. The experimental attenuation constants βH range between 1.7 nm−1 (CN) and 3.2 nm−1 (SH) and show the following trend: βH(CN) < βH(NH2) < βH(BT) < βH(PY) ≈ βH(SH). DFT-based calculations yield lower values, which range between 0.4 nm−1 (CN) and 2.2 nm−1 (PY).
Resumo:
The synthesis is reported of a new series of oligo(aryleneethynylene) (OAE) derivatives of up to ca. 6 nm in molecular length (OAE9) using iterative Pd-mediated Sonogashira cross-coupling methodology. The oligo-p-phenyleneethynylene cores of the molecular wires are functionalized at both termini with pyridyl units for attachment to gold leads. The molecular structures determined by single-crystal X-ray analysis are reported for OAE4, OAE5, OAE7, and OAE8a. The charge transport characteristics of derivatives OAE3–OAE9 in single-molecular junctions have been studied using the mechanically controlled break junction technique. The data demonstrate that the junction conductance decreases with increasing molecular length. A transition from coherent transport via tunneling to a hopping mechanism is found for OAE wires longer than ca. 3 nm.
Resumo:
The charge transport properties of a catechol-type dithiol-terminated oligo-phenylene-ethynylene was investigated by cyclic voltammetry (CV) and by the scanning tunnelling microscopy break junction technique (STM-BJ). Single molecule charge transport experiments demonstrated the existence of high and low conductance regions. The junction conductance is rather weakly dependent on the redox state of the bridging molecule. However, a distinct dependence of junction formation probability and of relative stretching distances of the catechol- and quinone-type molecular junctions is observed. Substitution of the central catechol ring with alkoxy-moieties and the combination with a topological analysis of possible π-electron pathways through the respective molecular skeletons lead to a working hypothesis, which could rationalize the experimentally observed conductance characteristics of the redox-active nanojunctions.
Resumo:
Employing a scanning tunneling microscopy based beak junction technique and mechanically controlled break junction experiments, we investigated tolane (diphenylacetylene)-type single molecular junctions having four different anchoring groups (SH, pyridyl (PY), NH2, and CN) at a solid/liquid interface. The combination of current–distance and current–voltage measurements and their quantitative statistical analysis revealed the following sequence for junction formation probability and stability: PY > SH > NH2 > CN. For all single molecular junctions investigated, we observed the evolution through multiple junction configurations, with a particularly well-defined binding geometry for PY. The comparison of density functional theory type model calculations and molecular dynamics simulations with the experimental results revealed structure and mechanistic details of the evolution of the different types of (single) molecular junctions upon stretching quantitatively.
Resumo:
AIMS In 1999 the consensus statement "living anatomy of the atrioventricular junctions" was published. With that new nomenclature the former posteroseptal accessory pathway (APs) are termed paraseptal APs. The aim of this study was to identify ECG features of manifest APs located in this complex paraseptal space. METHODS AND RESULTS ECG characteristics of all patients who underwent radiofrequency ablation of an AP during a 3 year period were analyzed. Of the 239 patients with one or more APs, 30 patients had a paraseptal AP with preexcitation. Compared to APs within the coronary sinus (CS) or the middle cardiac vein (MCV) the right sided paraseptal APs significantly more often showed an isoelectric delta wave in lead II and/or a negative delta wave in aVR. The left sided paraseptal APs presented a negative delta wave in II significantly more often compared to the right sided APs. CONCLUSIONS According to the site of radiofrequency ablation, paraseptal APs are classified into 4 subgroups: paraseptal right, paraseptal left, inside the CS or inside the MCV. Subtle differences in preexcitation patterns of the delta wave as well as of the QRS complex exist. However, the definitive localization of APs remains reserved to the periinterventional intracardiac electrogram analysis.
Resumo:
Desmosomes are cell adhesion junctions required for the normal development and maintenance of mammalian tissues and organs such as the skin, skin appendages, and the heart. The goal of this study was to investigate how desmocollins (DSCs), transmembrane components of desmosomes, are regulated at the transcriptional level. We hypothesized that differential expression of the Dsc2 and Dsc3 genes is a prerequisite for normal development of skin appendages. We demonstrate that plakoglobin (Pg) in conjunction with lymphoid enhancer-binding factor 1 (Lef-1) differentially regulates the proximal promoters of these two genes. Specifically, we found that Lef-1 acts as a switch activating Dsc2 and repressing Dsc3 in the presence of Pg. Interestingly, we also determined that NF-κB pathway components, the downstream effectors of the ectodysplasin-A (EDA)/ ectodysplasin-A receptor (EDAR)/NF-κB signaling cascade, can activate Dsc2 expression. We hypothesize that Lef-1 and EDA/EDAR/NF-κB signaling contribute to a shift in Dsc isoform expression from Dsc3 to Dsc2 in placode keratinocytes. It is tempting to speculate that this shift is required for the invasive growth of placode keratinocytes into the dermis, a crucial step in skin appendage formation.
Resumo:
This paper presents a firsthand comparative evaluation of three different existing methods for selecting a suitable allograft from a bone storage bank. The three examined methods are manual selection, automatic volume-based registration, and automatic surface-based registration. Although the methods were originally published for different bones, they were adapted to be systematically applied on the same data set of hemi-pelvises. A thorough experiment was designed and applied in order to highlight the advantages and disadvantages of each method. The methods were applied on the whole pelvis and on smaller fragments, thus producing a realistic set of clinical scenarios. Clinically relevant criteria are used for the assessment such as surface distances and the quality of the junctions between the donor and the receptor. The obtained results showed that both automatic methods outperform the manual counterpart. Additional advantages of the surface-based method are in the lower computational time requirements and the greater contact surfaces where the donor meets the recipient.
Resumo:
Gap junctions between neurons form the structural substrate for electrical synapses. Connexin 36 (Cx36, and its non-mammalian ortholog connexin 35) is the major neuronal gap junction protein in the central nervous system (CNS), and contributes to several important neuronal functions including neuronal synchronization, signal averaging, network oscillations, and motor learning. Connexin 36 is strongly expressed in the retina, where it is an obligatory component of the high-sensitivity rod photoreceptor pathway. A fundamental requirement of the retina is to adapt to broadly varying inputs in order to maintain a dynamic range of signaling output. Modulation of the strength of electrical coupling between networks of retinal neurons, including the Cx36-coupled AII amacrine cell in the primary rod circuit, is a hallmark of retinal luminance adaptation. However, very little is known about the mechanisms regulating dynamic modulation of Cx36-mediated coupling. The primary goal of this work was to understand how cellular signaling mechanisms regulate coupling through Cx36 gap junctions. We began by developing and characterizing phospho-specific antibodies against key regulatory phosphorylation sites on Cx36. Using these tools we showed that phosphorylation of Cx35 in fish models varies with light adaptation state, and is modulated by acute changes in background illumination. We next turned our focus to the well-studied and readily identifiable AII amacrine cell in mammalian retina. Using this model we showed that increased phosphorylation of Cx36 is directly related to increased coupling through these gap junctions, and that the dopamine-stimulated uncoupling of the AII network is mediated by dephosphorylation of Cx36 via protein kinase A-stimulated protein phosphatase 2A activity. We then showed that increased phosphorylation of Cx36 on the AII amacrine network is driven by depolarization of presynaptic ON-type bipolar cells as well as background light increments. This increase in phosphorylation is mediated by activation of extrasynaptic NMDA receptors associated with Cx36 gap junctions on AII amacrine cells and by Ca2+-calmodulin-dependent protein kinase II activation. Finally, these studies indicated that coupling is regulated locally at individual gap junction plaques. This work provides a framework for future study of regulation of Cx36-mediated coupling, in which increased phosphorylation of Cx36 indicates increased neuronal coupling.
Resumo:
Xenopus ARVCF (xARVCF), a member of p120-catenin subfamily, binds cadherin cytoplasmic domains to enhance cadherin metabolic stability, or when dissociated, modulates Rho-family GTPases. We previously found that xARVCF binds directly to Xenopus KazrinA (xKazrinA), a widely expressed, conserved protein that bears little homology to established protein families. xKazrinA is also known to influence keratinocyte proliferation-differentiation and cytoskeletal activity. In my study, I first evaluated the expression pattern of endogenous Kazrin RNA and protein in Xenopus embryogenesis as well as in adult tissues. We then collaboratively predicted the helical structure of Kazrin’s coiled-coil domain, and I obtained evidence of Kazrin’s dimerization/oligomerization. In considering the intracellular localization of the xARVCF-catenin:xKazrin complex, I did not resolve xKazrinA in a larger ternary complex with cadherin, nor did I detect its co-precipitation with core desmosomal components. Instead, screening revealed that xKazrinA binds spectrin. This suggested a potential means by which xKazrinA localizes to cell-cell junctions, and indeed, biochemical assays confirmed a ternary xARVCF:xKazrinA:xβ2-spectrin complex. Functionally, I demonstrated that xKazrin stabilizes cadherins by negatively modulating the RhoA small-GTPase. I further revealed that xKazrinA binds to p190B RhoGAP (an inhibitor of RhoA), and enhances p190B’s association with xARVCF. Supporting their functional interaction in vivo, Xenopus embryos depleted of xKazrin exhibited ectodermal shedding, a phenotype that could be rescued with exogenous xARVCF. Cell shedding appeared to be caused by RhoA activation, which consequently altered actin organization and cadherin function. Indeed, I was capable of rescuing Kazrin depletion with ectopic expression of p190B RhoGAP. In addition, I obtained evidence that xARVCF and xKazrin participate in craniofacial development, with effects observed upon the neural crest. Finally, I found that xKazrinA associates further with delta-catenin and p0071-catenin, but not with p120-catenin, suggesting that Kazrin interacts selectively with additional members of the p120-catenin sub-family. Taken together, my study supports Kazrin’s essential role in development, and reveals KazrinA’s biochemical and functional association with ARVCF-catenin, spectrin and p190B RhoGAP.
Resumo:
In search of transmittable epigenetic marks we investigated gene expression in testes and sperm cells of differentially fed F0 boars from a three generation pig feeding experiment that showed phenotypic differences in the F2 generation. RNA samples from 8 testes of boars that received either a diet enriched in methylating micronutrients or a control diet were analyzed by microarray analysis. We found moderate differential expression between testes of differentially fed boars with a high FDR of 0.82 indicating that most of the differentially expressed genes were false positives. Nevertheless, we performed a pathway analysis and found disparate pathway maps of development_A2B receptor: action via G-protein alpha s, cell adhesion_Tight junctions and cell adhesion_Endothelial cell contacts by junctional mechanisms which show inconclusive relation to epigenetic inheritance. Four RNA samples from sperm cells of these differentially fed boars were analyzed by RNA-Seq methodology. We found no differential gene expression in sperm cells of the two groups (adjusted P-value>0.05). Nevertheless, we also explored gene expression in sperm by a pathway analysis showing that genes were enriched for the pathway maps of bacterial infections in cystic fibrosis (CF) airways, glycolysis and gluconeogenesis p.3 and cell cycle_Initiation of mitosis. Again, these pathway maps are miscellaneous without an obvious relationship to epigenetic inheritance. It is concluded that the methylating micronutrients moderately if at all affects RNA expression in testes of differentially fed boars. Furthermore, gene expression in sperm cells is not significantly affected by extensive supplementation of methylating micronutrients and thus RNA molecules could not be established as the epigenetic mark in this feeding experiment.
Resumo:
Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.
Resumo:
Ciliary locomotion in the nudibranch mollusk Hermissenda is modulated by the visual and graviceptive systems. Components of the neural network mediating ciliary locomotion have been identified including aggregates of polysensory interneurons that receive monosynaptic input from identified photoreceptors and efferent neurons that activate cilia. Illumination produces an inhibition of type I(i) (off-cell) spike activity, excitation of type I(e) (on-cell) spike activity, decreased spike activity in type III(i) inhibitory interneurons, and increased spike activity of ciliary efferent neurons. Here we show that pairs of type I(i) interneurons and pairs of type I(e) interneurons are electrically coupled. Neither electrical coupling or synaptic connections were observed between I(e) and I(i) interneurons. Coupling is effective in synchronizing dark-adapted spontaneous firing between pairs of I(e) and pairs of I(i) interneurons. Out-of-phase burst activity, occasionally observed in dark-adapted and light-adapted pairs of I(e) and I(i) interneurons, suggests that they receive synaptic input from a common presynaptic source or sources. Rhythmic activity is typically not a characteristic of dark-adapted, light-adapted, or light-evoked firing of type I interneurons. However, burst activity in I(e) and I(i) interneurons may be elicited by electrical stimulation of pedal nerves or generated at the offset of light. Our results indicate that type I interneurons can support the generation of both rhythmic activity and changes in tonic firing depending on sensory input. This suggests that the neural network supporting ciliary locomotion may be multifunctional. However, consistent with the nonmuscular and nonrhythmic characteristics of visually modulated ciliary locomotion, type I interneurons exhibit changes in tonic activity evoked by illumination.
Resumo:
Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.