980 resultados para Addition of lime
Resumo:
Two published case reports showed that addition of risperidone (1 and 2 mg/d) to a clozapine treatment resulted in a strong increase of clozapine plasma levels. As clozapine is metabolized by cytochrome P450 isozymes, a study was initiated to assess the in vivo interaction potential of risperidone on various cytochrome P450 isozymes. Eight patients were phenotyped with dextromethorphan (CYP2D6), mephenytoin (CYP2C19), and caffeine (CYP1A2) before and after the introduction of risperidone. Before risperidone, all eight patients were phenotyped as being extensive metabolizers of CYP2D6 and CYP2C19. Risperidone at dosages between 2 and 6 mg/d does not appear to significantly inhibit CYP1A2 and CYP2C19 in vivo (median plasma paraxanthine/caffeine ratios before and after risperidone: 0.65, 0.69; p = 0.89; median urinary (S)/(R) mephenytoin ratios before and after risperidone:0.11, 0.12; p = 0.75). Although dextromethorphan metabolic ratio is significantly increased by risperidone (median urinary dextromethorphan/dextrorphan ratios before and after risperidone: 0.010, 0.018; p = 0.042), risperidone can be considered a weak in vivo CYP2D6 inhibitor, as this increase is modest and none of the eight patients was changed from an extensive to a poor metabolizer. The reported increase of clozapine concentrations by risperidone can therefore not be explained by an inhibition of CYP1A2, CYP2D6, CYP2C19 or by any combination of the three.
Resumo:
RÉSUMÉ La protéine kinase cyciine-cdc2p (Cdk) joue un rôle fondamental dans la progression du cycle cellulaire dans la levure de fission Schizosaccharomyces pombe. Nous avons étudié le rôle de cdc2p dans la régulation de la cascade de septation ou SIN (septation initiation network) en mitose et en méiose. Le SIN contrôle l'initiation de la cytokinèse à la fin de la mitose, et est supposé être négativement régulé par cdc2p. Nous avons mutagénéisé le site actif de cdc2p afin qu'il puisse lier un analogue de l'ATP (PP1) qui agit comme inhibiteur. Cet analogue ne peut pas lier la kinase de type sauvage. Cette approche dite «chemical genetics» permet une meilleure résolution temporelle comparée à l'approche classique utilisant les mutants sensibles à une température élevée. Nous avons montré que ce mutant cdc2-as (analogue sensitive) est fonctionnel et que, in vitro, l'activité kinase est inhibée en présence de l'analogue. Les cellules portant cette mutation, contrairement aux cellules de type sauvage s'arrêtent de manière irréversible soit en G2 soit en G1 et G2, suivant la concentration de l'inhibiteur. L'inactivation de cdc2p-as dans des cellules arrêtées en métaphase conduit au recrutement asymétrique des protéines du SIN sur le pôle du fuseau mitotique et au recrutement des composants du SIN, ainsi que de la ß-(1,3)glucan synthase à l'anneau contractile. De plus, nos résultats montrent que l'orthologue de la phosphatase cdc14p dans S. pombe, fip1p/clp1p, joue un rôle dans la régulation de la localisation des protéines du SIN suite à l'inactivation de cdc2p. Finalement, l'activité de cdc2p est requise pour maintenir la polo-like kinase plo1p sur les pôles du fuseau mitotique dans les premiers stages de la mitose. C'est pourquoi nous concluons que l'inactivation de cdc2p est suffisante pour activer le SIN et promouvoir la cytokinèse. Dans une étude séparée, nous avons caractérisé des potentiellement nouveaux composants ou régulateurs du SIN qui ont été isolés dans deux criblages génétiques visant à isoler des mutants atténuants la signalisation du SIN. Summary : The cyclin dependent protein kinase (Cdk) cdc2p plays a central role in the cell cycle progression of fission yeast Schizosaccharomyces pombe. We have studied the role of cdc2p in regulating the septation initiation network (SIN) in mitosis and meiosis. The SIN regulates the initiation of cytokinesis at the end of mitosis and is thought to be inhibited by cdc2p. We have mutated the active site of cdc2p to permit binding of an inhibitory ATP analogue (PP1), which is unable to bind unmodified kinases. This "chemical genetic" approach provides a much higher temporal resolution than it can be achieved with classical temperature-sensitive mutants. We demonstrate that cdc2-as (analogue sensitive) is functional and that addition of PP1 inhibits cdc2p kinase activity in vitro. Cells carrying the cdc2-as allele, but not cdc2+, undergo reversible cell cycle arrest following addition of PP1 either in G2, or at both major commitment points in the cell cycle (G1 and G2), depending upon the concentration of PP1. Inactivation of cdc2p-as in cells arrested in early mitosis promotes both the asymmetric recruitment of SIN proteins to the spindle pole bodies (SPBs), and the recruitment of the most downstream SIN components and ß-(1,3)-glucan synthase to the contractile ring. Furthermore, our results indicate that the S. pombe orthologue of Cdc14p, flp1p/clp1p, plays a role in regulating the relocalisation of SIN proteins following inactivation of cdc2p, and that cdc2p activity is required to retain the polo like kinase plot p on the SPBs in early mitosis. Thus, we conclude that inactivation of cdc2p is sufficient to activate the SIN and to promote cytokinesis. In a separate study, we have initially characterised potential novel components or regulators of the SIN pathway identified by two genetic screens for mutants attenuating SIN signaling.
Resumo:
Fixed delays in neuronal interactions arise through synaptic and dendritic processing. Previous work has shown that such delays, which play an important role in shaping the dynamics of networks of large numbers of spiking neurons with continuous synaptic kinetics, can be taken into account with a rate model through the addition of an explicit, fixed delay. Here we extend this work to account for arbitrary symmetric patterns of synaptic connectivity and generic nonlinear transfer functions. Specifically, we conduct a weakly nonlinear analysis of the dynamical states arising via primary instabilities of the stationary uniform state. In this way we determine analytically how the nature and stability of these states depend on the choice of transfer function and connectivity. While this dependence is, in general, nontrivial, we make use of the smallness of the ratio in the delay in neuronal interactions to the effective time constant of integration to arrive at two general observations of physiological relevance. These are: 1 - fast oscillations are always supercritical for realistic transfer functions. 2 - Traveling waves are preferred over standing waves given plausible patterns of local connectivity.
Resumo:
Passage of malaria infected blood through a two-layered column composed of acid-washed glass beads and CF 11 cellulose removes white cells from parasitized blood. However, because use of glass beads and CF 11 cellulose requires filtration of infected blood separately through these two resins and the addition of ADP, the procedure is time-consuming and may be inapropriate for use in the field, especially when large numbers of blood samples are to be treated. Our modification of this process yields parasitized cells free of contaminating leukocytes, and because of its operational simplicity, large numbers of blood samples can be processed. Our procedure also compares well with those using expensive commercial Sepacell resins in its ability to separate leukocytes from whole blood. As a test of usefulness in molecular biologic investigations, the parasites obtained from the blood of malaria-infected patients using the modified procedure yield genomic DNA whose single copy gene, the circumsporozite gene, efficiently amplifies by polymerase chain reaction.
Resumo:
We have previously shown that neuroblasts from cerebral hemispheres of 6-day-old chick embryos are able to proliferate when grown in the presence of fetal calf serum. We report here that in the presence of horse serum alone the proliferative rate of neuroblasts is strongly reduced. A high proliferative rate is restored upon the addition of bovine transferrin and to a lesser extent with added FeSO4 or hemin. These findings suggest that the transferrin of horse serum cannot be used by chick neuroblasts in vitro, while bovine transferrin exogenously added is active in promoting cell proliferation. We propose that the stimulatory activity of the fetal calf serum is due to bovine transferrin, since when this serum is fractionated by gel filtration, the fractions that stimulate the proliferation of neuroblasts grown in the presence of horse serum are located in the molecular weight area of transferrin, and they do contain transferrin as seen by immunoblotting with a specific anti-transferrin antibody.
Resumo:
We identified a gametocyte-specific protein of Plasmodium falciparum called Pf11-1 and provide experimental evidence that this molecule is involved in the emergence of gametes of the infected erythrocyte (gametogenesis). A mutant parasite clone, which has deleted over 90% of the PF11-1 gene locus, was an important control to establish the gametocyte-specific expression of the Pf11-1. Molecular analysis of the Pf11-1 deletion indicates that it is presumably due a chromosome breakage with subsequent "healing" by the addition of telomeric heptanucleotides. Moreover, similar DNA rearrangements are observed in most of the laboratory isolates during asexual propagation in vitro.
Resumo:
Extensive chromosome size polymorphism in Plasmodium berghei in vivo mitotic multiplication. Size differences between homologous chromosomes mainly involve rearrangements in the subtelomeric regions while internal chromosomal regions are more conserved. Size differences are almost exclusively due to differences in the copy number of a 2.3 kb subtelomeric repeat unit. Not only deletion of 2.3 kb repeats occurs, but addition of new copies of this repeat sometimes results in the formation of enlarged chromosomes. Even chromosomes which originally lack 2.3 kb repeats, can acquire these during mitotic multiplication. In one karyotype mutant, 2.3 kb repeats were inserted within one of the original telomeres of chromosome 4, creating an internal stretch oftelomeric repeats. Chromosome translocation can contribute to chromosome size polymorphism as well We found a karyotype mutant in which chromosome 7 with a size of about 1.4 Mb is translocated to chromosome 13/14 with a size of about 3 Mb, resulting in a rearranged chromosome, which was shown to contain a junction between internal DNA sequences of chromosome 13/14 and subtelomeric 2.3 kb repeats of chromosome 7. In this mutant a new chromosome of 1.4 Mb is present which consists of part of chromosome 13/14.
Resumo:
The dysregulation of the immune response by malaria parasite has been considered as a possible constraint to the effectiveness of malaria vaccination. In spite of the important role interleukin-I (IL-1) in malaria are lacking. We found that only 2 out of 35 subjectswith acute malaria showed increased levels of serum IL-1 alpha by enzyme immunoassay. To assess whether IL-1 could interfere with T- lymphocyte responses, blood mononuclear cells from patients infected with Plasmodium falciparum, P. vivax, or healthy subjects were cultured with phytohemagglutinin, and lymphocyte proliferation measured 72h later by 3H-thymidine incorporation. Our data showed that T-lymphocyte responses are depressed both in P. falciparum (10,500 ñ 2,900) and P. vivax malaria (13,000 ñ 3,300), as compared to that of healthy individuals (27,000 ñ 3,000). Addition of IL-1 partially reserved depression of malaria lymphocytes, but had no effect on normal cells. On the other hand, T-lymphocytes from malaria infected-subjects presented a minimal decrease in proliferation, when cultured in the presence of exogenous PGE2. These data indicate the occurrence of two defects of immunoregulation in malaria: a deficiency of IL-1 production by monocytes/macrophages, and an increased resistance of lymphocytes to the antiproliferative effect of PGE2.
Resumo:
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
Resumo:
The human estrogen receptor (hER) is a trans-acting regulatory protein composed of a series of discrete functional domains. We have microinjected an hER expression vector (HEO) into Xenopus oocyte nuclei and demonstrate, using Western blot assay, that the hER is synthesized. When nuclear extracts from oocytes were prepared and incubated in the presence of a 2.7 kb DNA fragment comprising the 5' end of the vitellogenin gene B2, formation of estrogen-dependent complexes could be visualized by electron microscopy over the estrogen responsive element (ERE). Of crucial importance is the observation that the complex formation is inhibited by the estrogen antagonist tamoxifen, is restored by the addition of the hormone and does not take place with extracts from control oocytes injected with the expression vector lacking the sequences encoding the receptor. The presence of the biologically active hER is confirmed in co-injection experiments, in which HEO is co-introduced with a CAT reporter gene under the control of a vitellogenin promoter containing or lacking the ERE. CAT assays and primer extensions analyses reveal that both the receptor and the ERE are essential for estrogen induced stimulation of transcription. The same approach was used to analyze selective hER mutants. We find that the DNA binding domain (region C) is essential for protein--DNA complex formation at the ERE but is not sufficient by itself to activate transcription from the reporter gene. In addition to region C, both the hormone binding (region E) and amino terminal (region A/B) domains are needed for an efficient transcription activation.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Although combination chemotherapy has been shown to be more effective than single agents in advanced esophagogastric cancer, the better response rates have not fulfilled their promise as overall survival times from best combination still range between 8 to 11 months. So far, the development of targeted therapies stays somewhat behind their integration into treatment concepts compared to other gastrointestinal diseases. Thus, the review summarizes the recent advances in the development of targeted therapies in advanced esophagogastric cancer. The majority of agents tested were angiogenesis inhibitors or agents targeting the epidermal growth factor receptors EGFR1 and HER2. For trastuzumab and bevacizumab, phase III trial results have been presented recently. While addition of trastuzumab to cisplatin/5-fluoropyrimidine-based chemotherapy results in a clinically relevant and statistically significant survival benefit in HER 2+ patients, the benefit of the addition of bevacizumab to chemotherapy was not significant. Thus, all patients with metastatic disease should be tested for HER-2 status in the tumor. Trastuzumab in combination with cisplatin/5-fluoropyrimidine-based chemotherapy is the new standard of care for patients with HER2-positive advanced gastric cancer.
Resumo:
Upon infection with the protozoan parasite Leishmania major, susceptible BALB/c mice develop unhealing lesions associated with the maturation of CD4(+)Th2 cells secreting IL-4. In contrast, resistant C57BL/6 mice heal their lesions, because of expansion and secretion of IFN-gamma of CD4(+) Th1 cells. The Fas-FasL pathway, although not involved in Th cell differentiation, was reported to be necessary for complete resolution of lesions. We investigate here the role of IFN-gamma and IL-4 on Fas-FasL nonapoptotic signaling events leading to the modulation of macrophage activation. We show that addition of FasL and IFN-gamma to BMMø led to their increased activation, as reflected by enhanced secretion of TNF, IL-6, NO, and the induction of their microbicidal activity, resulting in the killing of intracellular L. major. In contrast, the presence of IL-4 decreased the synergy of IFN-gamma/FasL significantly on macrophage activation and the killing of intracellular L. major. These results show that FasL synergizes with IFN-gamma to activate macrophages and that the tight regulation by IFN-gamma and/or IL-4 of the nonapoptotic signaling events triggered by the Fas-FasL pathway affects significantly the activation of macrophages to a microbicidal state and may thus contribute to the pathogenesis of L. major infection.
Resumo:
Schneider's Drosophila medium, a complex amino acid rich medium was tested alone and with seven different sugars for some aspects of the biology of Lutzomyia longipalpis. Statistically significant results were obtained when sucrose was used alone, indicating that among the sugars tested, this is still the most suitable and practical one for the maintenance of L. longipalpis colonies. However, the addition of Schneider's medium to a pool of different sugars, was suggested to be related with the acceptance of the first and second blood meals and to longevity, these being, obviously, quite relevant aspects when tansmission experiments are contemplated.
Resumo:
Primary sensory neurons display various neuronal phenotypes which may be influenced by factors present in central or peripheral targets. In the case of DRG cells expressing substance P (SP), the influence of peripheral or central targets was tested on the neuronal expression of this neuropeptide. DRG cells were cultured from chick embryo at E6 or E10 (before or after establishment of functional connections with targets). Preprotachykinin mRNA was visualized in DRG cell cultures by either Northern blot or in situ hybridization using an antisense labeled riboprobe, while the neuropeptide SP was detected by immunostaining with a monoclonal antibody. In DRG cell cultures from E10, only 60% of neurons expressed SP. In contrast, DRG cell cultures performed at E6 showed a significant hybridization signal and SP-like immunoreactivity in virtually all the neurons (98%). The addition of extracts from muscle, skin, brain or spinal cord to DRG cells cultured at E6 reduced by 20% the percentage of neurons which express preprotachykinin mRNA and SP-like immunoreactivity. Our results indicate that factors issued from targets inhibit SP-expression by a subset of primary sensory neurons and act on the transcriptional control of preprotachykinin gene.
Resumo:
The production of interleukin 2 (IL-2) by peripheral blood mononuclear cells, from patients with different clinical forms of Chagas disease and healthy controls, was evaluated after stimulation with Trypanosoma cruzi antigen, PPD and PHA. PHA induced higher production of IL-2 in infected patients than healthy controls. No diferences were found between infected groups. With PPD the trend was similar, the only difference was that asymptomatic infected patients (INF) showed higher levels of IL-2 production than patients with cardiomyopathy (CDM). With T. cruzi antigen, most patients showed little or no IL-2 production at 24 hr, a peak at 48 hr and an abrupt fall at 72 hr. A similar pattern of IL- 2 production was observed in INF and CDM. To evaluate the physiologic relevance of the deficit in IL-2 production, we studied the effect of non-mitogenic concentratios of IL-2 in the proliferative response to specific antigens. The addition of IL-2 only enhanced the proliferative response of CDM patients. These observations suggest that patients suffering Chagas' disease, particularly CDM, have a significant reduction in the capacity to produce IL-2. These findings could be of importance in the pathogenesis of Chagas' disease.