999 resultados para AQUEOUS SOLUBILIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene oxide (GO) possesses unusual electronic and mechanical properties, including the ability to stabilize graphene radicals (GRs). However, controlled generation of GRs remains a challenge for applications requiring large-scale production. In this study, we demonstrate controlled production of GRs by UVB irradiation of GO solutions. Electron paramagnetic resonance spectroscopy of GO solutions revealed a dose-dependent exponential growth in radical production as a function of UVB exposure time. The GRs were air-stable over a long period, both in the solution state and in freeze-dried powders, suggesting they are graphene-based phenalenyl-like radicals. The redox activity of GRs was demonstrated by their ability to oxidize the chromophore 3,5,3?,5?- tetramethylbenzidine, with oxidation capacity of GO increasing with GR content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solo exhibition of paintings

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report a viable route to fibrillar micelles and entrapped vesicles in aqueous solutions. Nanofibrillar micelles and entrapped vesicles were prepared from complexes of a biodegradable block copolymer poly(ethylene oxide)-block-poly(lactide) (PEO-b-PLA) and a polyelectrolyte poly(acrylic acid) (PAA) in aqueous media and directly visualized using cryogenic transmission electron microscopy (cryo-TEM). The self-assembly and the morphological changes in the complexes were induced by the addition of PAA/water solution into the PEO-b-PLA in tetrahydrofuran followed by dialysis against water. A variety of morphologies including spherical wormlike and fibrillar micelles, and both unilamellar and entrapped vesicles, were observed, depending on the composition, complementary binding sites of PAA and PEO, and the change in the interfacial energy. Increasing the water content in each [AA]/[EO] ratio led to a morphological transition from spheres to vesicles, displaying both the composition- and dilution-dependent micellar-to-vesicular morphological transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomistic simulations of molecular adsorption onto inorganic substrates under aqueous conditions can be used to guide the rational design of new materials, fabricated using biomimetic methods. The success of such work depends critically on the model used. Here, we investigate the impact of using a rigid structural model of the (0 1 1) ?-quartz surface, over a fully flexible model, on the calculated free energy change in the adsorption of a single molecule of benzene (a simple analogue of the amino acid phenylalanine) from liquid water. Subtle differences in the mobility of the adsorbate close to the surface result in the free energy of adsorption being overestimated by the rigid model, relative to the fully flexible case. Moreover, we find that the distribution of bound configurations of the adsorbate at their respective free energy minima is different between the two models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a functionalized zeolites column was developed to remove ammonia nitrogen with a low concentration (50 mg/L) from aqueous solution. The absorption properties and regeneration capacity were investigated. Through breakthrough and elution curve for dynamic adsorption, we found the wastewater with 50 mg/L ammonia nitrogen took 7 h to flow 10 g modified zeolites column with diameters of 24 to 64 meshes at a flow rate of 2 mL/min. The saturated extent of adsorption was up to 7.95 mg/g, and the saturated adsorption time was 22 h. The process of dynamic adsorption could be fitted by the Thomas Model. The regeneration ability was optimized by 0.1 M Na2CO3 as a regenerant. With excellent absorption ability for removing ammonia nitrogen with a low concentration, the functionalized zeolites could be potentially used a high-performance adsorbent for removing ammonia nitrogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the structure of the electrical double layer, determined from molecular dynamics simulations, for a range of saline solutions (NaCl, KCl, MgCl2 and CaCl2) at both 0.16 and 0.60molkg(-1) on different facets of the gold and silver aqueous interfaces. We consider the Au/Ag(111), native Au/Ag(100) and reconstructed Au(100)(5×1) facets. For a given combination of metallic surface and facet, some variations in density profile are apparent across the different cations in solution, with the corresponding chloride counterion profiles remaining broadly invariant. All density profiles at the higher concentration are predicted to be very similar to their low-concentration counterparts. We find that each electrolyte responds differently to the different metallic surface and facets, particularly those of the divalent metal ions. Our findings reveal marked differences in density profiles between facets for a given metallic interface for both Mg(2+) and Ca(2+), with Na(+) and K(+) showing much less distinction. Mg(2+) was the only ion for which we find evidence of materials-dependent differences in interfacial solution structuring between the Ag and Au.