962 resultados para ALVEOLAR MACROPHAGE PHAGOCYTOSIS
Resumo:
To minimize the risk of intraoperative complications, a comprehensive radiological diagnostic work-up should be a routine procedure in oral surgery. This is especially true concerning possible damage to the inferior alveolar nerve during surgical removal of the third molars. The course and location of the nerve are best assessed when evaluating panoramic view images or cone beam CTs. The following case report demonstrates and discusses the importance of a thorough radiological evaluation before surgery, the problems raised by an interradicular course of the inferior alveolar nerve, and the finding of a monostotic fibrous dyplasia in the same patient.
Resumo:
BACKGROUND: Psoriasis is a chronic immune-mediated skin disease, in which interleukins 12 and 23 have been postulated to play a critical role. However, the cellular source of these cytokines in psoriatic lesions are still poorly defined and their relative contribution in inducing skin inflammation has been discussed controversially. OBJECTIVES: To investigate immunoreactivity of the bioactive forms of IL-12 and IL-23 in plaque psoriasis and to characterize the dendritic cell (DC) and macrophage subsets responsible for the production of these cytokines. METHODS: Immunohistochemistry was performed on normal skin (n=11) as well as non-lesional (n=11) and lesional (n=11) skin of patients with plaque psoriasis using monoclonal antibodies targeting the bioactive forms of IL-12 (IL-12p70) and IL-23 (IL-23p19/p40) on serial cryostat sections using the alkaline phosphatase-antialkaline phosphatase. Co-localization of IL-12 and IL-23 with different dendritic cells and macrophage cell markers (CD1a, CD11c, CD14, CD32, CD68, CD163, CD208/DC-LAMP) was performed using double immunofluorescence staining. RESULTS: Immunoreactivity for IL-12 and IL-23 was significantly enhanced in lesional psoriatic skin as compared to non-lesional and normal skin. No difference was observed between IL-12 and IL-23 immunoreactivity in any skin types. Both IL-12 and IL-23 immunoreactivity was readily detected mainly in CD11c+, CD14+, CD32+, CD68+ and some CD163+, DC-LAMP+ cells. IL-12 and occasionally IL-23 were also found in some CD1a+ dendritic cells. In addition, an enhanced expression mainly of IL-23 was observed in keratinocytes. CONCLUSIONS: Bioactive forms of IL-12 and IL-23 are highly expressed in various DC and macrophage subsets and their marked in situ production suggest that both cytokines have crucial pathogenic role in psoriasis.
Resumo:
BACKGROUND: Surfactant protein type B (SPB) is needed for alveolar gas exchange. SPB is increased in the plasma of patients with heart failure (HF), with a concentration that is higher when HF severity is highest. The aim of this study was to evaluate the relationship between plasma SPB and both alveolar-capillary diffusion at rest and ventilation versus carbon dioxide production during exercise. METHODS AND RESULTS: Eighty patients with chronic HF and 20 healthy controls were evaluated consecutively, but the required quality for procedures was only reached by 71 patients with HF and 19 healthy controls. Each subject underwent pulmonary function measurements, including lung diffusion for carbon monoxide and membrane diffusion capacity, and maximal cardiopulmonary exercise test. Plasma SPB was measured by immunoblotting. In patients with HF, SPB values were higher (4.5 [11.1] versus 1.6 [2.9], P=0.0006, median and 25th to 75th interquartile), whereas lung diffusion for carbon monoxide (19.7+/-4.5 versus 24.6+/-6.8 mL/mm Hg per min, P<0.0001, mean+/-SD) and membrane diffusion capacity (28.9+/-7.4 versus 38.7+/-14.8, P<0.0001) were lower. Peak oxygen consumption and ventilation/carbon dioxide production slope were 16.2+/-4.3 versus 26.8+/-6.2 mL/kg per min (P<0.0001) and 29.7+/-5.9 and 24.5+/-3.2 (P<0.0001) in HF and controls, respectively. In the HF population, univariate analysis showed a significant relationship between plasma SPB and lung diffusion for carbon monoxide, membrane diffusion capacity, peak oxygen consumption, and ventilation/carbon dioxide production slope (P<0.0001 for all). On multivariable logistic regression analysis, membrane diffusion capacity (beta, -0.54; SE, 0.018; P<0.0001), peak oxygen consumption (beta, -0.53; SE, 0.036; P=0.004), and ventilation/carbon dioxide production slope (beta, 0.25; SE, 0.026; P=0.034) were independently associated with SPB. CONCLUSIONS: Circulating plasma SPB levels are related to alveolar gas diffusion, overall exercise performance, and efficiency of ventilation showing a link between alveolar-capillary barrier damage, gas exchange abnormalities, and exercise performance in HF.
Resumo:
This case report presents the treatment sequence of a 56 years old patient after he developed periimplantitis at the implant in position of tooth 22. This implant was integrated in an overdenture reconstruction connected to a soldered screw retained gold bar. The entire 2-stage procedure of implant explantation, simultaneous bone augmentation and new implant placement is documented. The onlay-graft was performed by means of the Transfer-Ring-Control System (Meisinger). The existing gold bar could be resoldered and adapted to the new implant. Accordingly the overdenture was relined and the female retainer mounted. The treatment period covered almost one year.
Resumo:
BACKGROUND: In the acute respiratory distress syndrome potentially recruitable lung volume is currently discussed. (3)He-magnetic resonance imaging ((3)He-MRI) offers the possibility to visualize alveolar recruitment directly. METHODS: With the approval of the state animal care committee, unilateral lung damage was induced in seven anesthetized pigs by saline lavage of the right lungs. The left lung served as an intraindividual control (healthy lung). Unilateral lung damage was confirmed by conventional proton MRI and spiral-CT scanning. The total aerated lung volume was determined both at a positive end-expiratory pressure (PEEP) of 0 and 10 mbar from three-dimensionally reconstructed (3)He images, both for healthy and damaged lungs. The fractional increase of aerated volume in damaged and healthy lungs, followed by a PEEP increase from 0 to 10 mbar, was compared. RESULTS: Aerated gas space was visualized with a high spatial resolution in the three-dimensionally reconstructed (3)He-MR images, and aeration defects in the lavaged lung matched the regional distribution of atelectasis in proton MRI. After recruitment and PEEP increase, the aerated volume increased significantly both in healthy lungs from 415 ml [270-445] (median [min-max]) to 481 ml [347-523] and in lavaged lungs from 264 ml [71-424] to 424 ml [129-520]. The fractional increase in lavaged lungs was significantly larger than that in healthy lungs (healthy: 17% [11-38] vs. lavage: 42% [14-90] (P=0.031). CONCLUSION: The (3)He-MRI signal might offer an experimental approach to discriminate atelectatic vs. poor aerated lung areas in a lung damage animal model. Our results confirm the presence of potential recruitable lung volume by either alveolar collapse or alveolar flooding, in accordance with previous reports by computed tomography.
Resumo:
Annexin-1 (ANXA1) is a mediator of the anti-inflammatory actions of endogenous and exogenous glucocorticoids (GC). The mechanism of ANXA1 effects on cytokine production in macrophages is unknown and is here investigated in vivo and in vitro. In response to LPS administration, ANXA1(-/-) mice exhibited significantly increased serum IL-6 and TNF compared with wild-type (WT) controls. Similarly, LPS-induced IL-6 and TNF were significantly greater in ANXA1(-/-) than in WT peritoneal macrophages in vitro. In addition, deficiency of ANXA1 was associated with impairment of the inhibitory effects of dexamethasone (DEX) on LPS-induced IL-6 and TNF in macrophages. Increased LPS-induced cytokine expression in the absence of ANXA1 was accompanied by significantly increased LPS-induced activation of ERK and JNK MAPK and was abrogated by inhibition of either of these pathways. No differences in GC effects on MAPK or MAPK phosphatase 1 were observed in ANXA1(-/-) cells. In contrast, GC-induced expression of the regulatory protein GILZ was significantly reduced in ANXA1(-/-) cells by silencing of ANXA1 in WT cells and in macrophages of ANXA1(-/-) mice in vivo. GC-induced GILZ expression and GC inhibition of NF-kappaB activation were restored by expression of ANXA1 in ANXA1(-/-) cells, and GILZ overexpression in ANXA1(-/-) macrophages reduced ERK MAPK phosphorylation and restored sensitivity of cytokine expression and NF-kappaB activation to GC. These data confirm ANXA1 as a key inhibitor of macrophage cytokine expression and identify GILZ as a previously unrecognized mechanism of the anti-inflammatory effects of ANXA1.
Scarring of gingiva and alveolar mucosa following apical surgery: a visual assessment after one year
Resumo:
Intra-alveolar fibrin is formed following lung injury and inflammation and may contribute to the development of pulmonary fibrosis. Fibrin turnover is altered in patients with pulmonary fibrosis, resulting in intra-alveolar fibrin accumulation, mainly due to decreased fibrinolysis. Alveolar type II epithelial cells (AEC) repair the injured alveolar epithelium by migrating over the provisional fibrin matrix. We hypothesized that repairing alveolar epithelial cells modulate the underlying fibrin matrix by release of fibrinolytic activity, and that the degree of fibrinolysis modulates alveolar epithelial repair on fibrin. To test this hypothesis we studied alveolar epithelial wound repair in vitro using a modified epithelial wound repair model with human A549 alveolar epithelial cells cultured on a fibrin matrix. In presence of the inflammatory cytokine interleukin-1beta, wounds increase by 800% in 24 hours mainly due to detachment of the cells, whereas in serum-free medium wound areas decreases by 22.4 +/- 5.2% (p < 0.01). Increased levels of D-dimer, FDP and uPA in the cell supernatant of IL-1beta-stimulated A549 epithelial cells indicate activation of fibrinolysis by activation of the plasmin system. In presence of low concentrations of fibrinolysis inhibitors, including specific blocking anti-uPA antibodies, alveolar epithelial repair in vitro was improved, whereas in presence of high concentrations of fibrinolysis inhibitors, a decrease was observed mainly due to decreased spreading and migration of cells. These findings suggest the existence of a fibrinolytic optimum at which alveolar epithelial repair in vitro is most efficient. In conclusion, uPA released by AEC alters alveolar epithelial repair in vitro by modulating the underlying fibrin matrix.
Resumo:
We have addressed the role of macrophages in glial response and T cell entry to the CNS after axonal injury, by using intravenous injection of clodronate-loaded mannosylated liposomes, in C57BL6 mice. As expected, clodronate-liposome treatment resulted in depletion of peripheral macrophages which was confirmed by F4/80- and MOMA-1(-) stainings in spleen. Sequential clodronate-liposome treatment 4, 2 and 0 days before axotomy resulted in significant reduction of infiltrating CD45(high) CD11b+ macrophages in the hippocampus at 1, 2 and 3 days post-lesion, measured by flow cytometry. There was a slight delay in the expansion of CD45(dim) CD11+ microglia in clodronate-liposome treated mice, but macrophage depletion had no effect on the percentage of infiltrating T cells in the lesion-reactive hippocampus. Lesion-induced TNFalpha mRNA expression was not affected by macrophage depletion, suggesting that activated glial cells are the primary source of this cytokine in the axonal injury-reactive brain. This identifies a potentially important distinction from inflammatory autoimmune infiltration in EAE, where macrophages are a prominent source of TNFalpha and their depletion prevents parenchymal T cell infiltration and disease.
Resumo:
Cathepsin D (Cath-D) expression in human primary breast cancer has been associated with a poor prognosis. In search of a better understanding of the Cath-D substrates possibly involved in cancer invasiveness and metastasis, we investigated the potential interactions between this protease and chemokines. Here we report that purified Cath-D, as well as culture supernatants from the human breast carcinoma cell lines MCF-7 and T47D, selectively degrade macrophage inflammatory protein (MIP)-1 alpha (CCL3), MIP-1 beta (CCL4), and SLC (CCL21). Proteolysis was totally blocked by the protease inhibitor pepstatin A, and specificity of Cath-D cleavage was demonstrated using a large chemokine panel. Whereas MIP-1 alpha and MIP-1 beta degradation was rapid and complete, cleavage of SLC was slow and not complete. Mass spectrometry analysis showed that Cath-D cleaves the Leu(58) to Trp(59) bond of SLC producing two functionally inactive fragments. Analysis of Cath-D proteolysis of a series of monocyte chemoattractant protein-3/MIP-1 beta hybrids indicated that processing of MIP-1 beta might start by cleaving off amino acids located in the C-terminal domain. In situ hybridization studies revealed MIP-1 alpha, MIP-1 beta, and Cath-D gene expression mainly in the stromal compartment of breast cancers whereas SLC transcripts were found in endothelial cells of capillaries and venules within the neoplastic tissues. Cath-D production in the breast carcinoma cell lines MCF-7 and T47D, as assessed by enzyme-linked immunosorbent assay of culture supernatants and cell lysates, was not affected by stimulation with chemokines such as interleukin-8 (CXCL8), SDF-1 (CXCL12), and SLC. These data suggest that inactivation of chemokines by Cath-D possibly influences regulatory mechanisms in the tumoral extracellular microenvironment that in turn may affect the generation of the antitumoral immune response, the migration of cancer cells, or both processes.
Resumo:
Echinococcus granulosus and Echinococcus multilocularis are cestode parasites, of which the metacestode (larval) stages cause the neglected diseases cystic echinococcosis (CE) and alveolar echinococcosis (AE), respectively. The benzimidazoles albendazole and mebendazole are presently used for the chemotherapeutical treatment, alone or prior to and after surgery. However, in AE these benzimidazoles do not appear to be parasiticidal in vivo. In addition, failures in drug treatments as well as the occurrence of side-effects have been reported, leading to discontinuation of treatment or to progressive disease. Therefore, new drugs are needed to cure AE and CE. Strategies that are currently employed in order to identify novel chemotherapeutical treatment options include in vitro and in vivo testing of broad-spectrum anti-infective drugs or drugs that interfere with unlimited proliferation of cancer cells. The fact that the genome of E. multilocularis has recently been sequenced has opened other avenues, such as the selection of novel drugs that interfere with the parasite signalling machinery, and the application of in silico approaches by employing the Echinococcus genome information to search for suitable targets for compounds of known mode of action.
Resumo:
OBJECTIVE: To determine the minimum alveolar concentration (MAC) of isoflurane in Shetland ponies using a sequence of three different supramaximal noxious stimulations at each tested concentration of isoflurane rather than a single stimulation. STUDY DESIGN: Prospective, experimental trial. ANIMALS: Seven 4-year-old, gelding Shetland ponies. METHODS: The MAC of isoflurane was determined for each pony. Three different modes of electrical stimulation were applied consecutively (2 minute intervals): two using constant voltage (90 V) on the gingiva via needle- (CVneedle) or surface-electrodes (CVsurface) and one using constant current (CC; 40 mA) via surface electrodes applied to the skin over the digital nerve. The ability to clearly interpret the responses as positive, the latency of the evoked responses and the inter-electrode resistance were recorded for each stimulus. RESULTS: Individual isoflurane MAC (%) values ranged from 0.60 to 1.17 with a mean (+/-SD) of 0.97 (+/-0.17). The responses were more clearly interpreted with CC, but did not reach statistical significance. The CVsurface mode produced responses with a longer delay. The CVneedle mode was accompanied by variable inter-electrode resistances resulting in uncontrolled stimulus intensity. At 0.9 MAC, the third stimulation induced more positive responses than the first stimulation, independent of the mode of stimulation used. CONCLUSIONS: The MAC of isoflurane in the Shetland ponies was lower than expected with considerable variability among individuals. Constant current surface electrode stimulations were the most repeatable. A summation over the sequence of three supramaximal stimulations was observed around 0.9 MAC. CLINICAL RELEVANCE: The possibility that Shetland ponies require less isoflurane than horses needs further investigation. Constant current surface-electrode stimulations were the most repeatable. Repetitive supramaximal stimuli may have evoked movements at isoflurane concentrations that provide immobility when single supramaximal stimulation was applied.
Resumo:
In most rodents and some other mammals, the removal of one lung results in compensatory growth associated with dramatic angiogenesis and complete restoration of lung capacity. One pivotal mechanism in neoalveolarization is neovascularization, because without angiogenesis new alveoli can not be formed. The aim of this study is to image and analyze three-dimensionally the different patterns of neovascularization seen following pneumonectomy in mice on a sub-micron-scale. C57/BL6 mice underwent a left-sided pneumonectomy. Lungs were harvested at various timepoints after pneumonectomy. Volume analysis by microCT revealed a striking increase of 143 percent in the cardiac lobe 14 days after pneumonectomy. Analysis of microvascular corrosion casting demonstrated spatially heterogenous vascular densitities which were in line with the perivascular and subpleural compensatory growth pattern observed in anti-PCNA-stained lung sections. Within these regions an expansion of the vascular plexus with increased pillar formations and sprouting angiogenesis, originating both from pre-existing bronchial and pulmonary vessels was observed. Also, type II pneumocytes and alveolar macrophages were seen to participate actively in alveolar neo-angiogenesis after pneumonectomy. 3D-visualizations obtained by high-resolution synchrotron radiation X-ray tomographic microscopy showed the appearance of double-layered vessels and bud-like alveolar baskets as have already been described in normal lung development. Scanning electron microscopy data of microvascular architecture also revealed a replication of perialveolar vessel networks through septum formation as already seen in developmental alveolarization. In addition, the appearance of pillar formations and duplications on alveolar entrance ring vessels in mature alveoli are indicative of vascular remodeling. These findings indicate that sprouting and intussusceptive angiogenesis are pivotal mechanisms in adult lung alveolarization after pneumonectomy. Various forms of developmental neoalveolarization may also be considered to contribute in compensatory lung regeneration.