992 resultados para ADSORPTION SIMULATION
Resumo:
In this paper, the effect of phosphate anion adsorption on the permeability values of homoionized kaolinite and montmorillonite clays is presented. The homoionized sodium, calcium and hydrogen clays are prepared by repeatedly washing the clays with 2N solutions of corresponding chlorides. Phosphate adsorption was induced by treating homoionized clays with phosphoric acids for different periods varying upto 1000 hrs. The coefficient of permeability of the clays was determined from one dimensional consolidation test results. The decrease in the permeability of kaolinite clays on phosphate adsorption has been explained on the fabric changes. For montmorillonite, both cation exchange and phosphate adsorption causes significant changes which are explained based on variation in the thickness of diffuse double layer.
Resumo:
We have carried out Brownian dynamics simulations of binary mixtures of charged colloidal suspensions of two different diameter particles with varying volume fractions phi and charged impurity concentrations n(i). For a given phi, the effective temperature is lowered in many steps by reducing n(i) to see how structure and dynamics evolve. The structural quantities studied are the partial and total pair distribution functions g(tau), the static structure factors, the time average g(<(tau)over bar>), and the Wendt-Abraham parameter. The dynamic quantity is the temporal evolution of the total meansquared displacement (MSD). All these parameters show that by lowering the effective temperature at phi = 0.2, liquid freezes into a body-centered-cubic crystal whereas at phi = 0.3, a glassy state is formed. The MSD at intermediate times shows significant subdiffusive behavior whose time span increases with a reduction in the effective temperature. The mean-squared displacements for the supercooled liquid with phi = 0.3 show staircase behavior indicating a strongly cooperative jump motion of the particles.
Resumo:
We report the Brownian dynamics simulation results on the translational and bond-angle-orientational correlations for charged colloidal binary suspensions as the interparticle interactions are increased to form a crystalline (for a volume fraction phi = 0.2) or a glassy (phi = 0.3) state. The translational order is quantified in terms of the two- and four-point density autocorrelation functions whose comparisons show that there is no growing correlation length near the glass transition. The nearest-neighbor orientational order is determined in terms of the quadratic rotational invariant Q(l) and the bond-orientational correlation functions g(l)(t). The l dependence of Q(l) indicates that icosahedral (l = 6) order predominates at the cost of the cubic order (l = 4) near the glass as well as the crystal transition. The density and orientational correlation functions for a supercooled liquid freezing towards a glass fit well to the streched-exponential form exp[-(t/tau)(beta)]. The average relaxation times extracted from the fitted stretched-exponential functions as a function of effective temperatures T* obey the Arrhenius law for liquids freezing to a crystal whereas these obey the Vogel-Tamman-Fulcher law exp[AT(0)*/(T* - T-0*)] for supercooled Liquids tending towards a glassy state. The value of the parameter A suggests that the colloidal suspensions are ''fragile'' glass formers like the organic and molecular liquids.
Resumo:
We report the results of Monte Carlo simulation of oxygen ordering in the oxygen deficient portion (x<0.5) of YBa2Cu3O6+x at low temperatures. We find qualitative agreement among cluster - variation, Monte Carlo and transfer matrix methods. However, low temperature and ground state simulations clearly indicate the presence of a tetragonal phase. There is also evidence for two second order phase transition lines separating the tetragonal and the �double cell� ortho II phase. The effect of decreasing the inter-chain repulsion on oxygen ordering has also been investigated.
Resumo:
Tetragonal ZrO2 was synthesized by the solution combustion technique using glycine as the fuel. The compound was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and BET surface area analysis. The ability of this compound to adsorb dyes was investigated, and the compound had a higher adsorption capacity than commercially activated carbon. Infrared spectroscopic observations were used to determine the various interactions and the groups responsible for the adsorption activity of the compound. The effects of the initial concentration of the dye, temperature, adsorbent concentration, and pH of the solution were studied. The kinetics of adsorption was described as a first-order process, and the relative magnitudes of internal and external mass transfer processes were determined. The equilibrium adsorption was also determined and modeled by a composite Langmuir-Freundlich isotherm.
Monte Carlo simulation of network formation based on structural fragments in epoxy-anhydride systems
Resumo:
A method combining the Monte Carlo technique and the simple fragment approach has been developed for simulating network formation in amine-catalysed epoxy-anhydride systems. The method affords a detailed insight into the nature and composition of the network, showing the distribution of various fragments. It has been used to characterize the network formation in the reaction of the diglycidyl ester of isophthalic acid with hexahydrophthalic anhydride, catalysed by benzyldimethylamine. Pre-gel properties like number and weight distributions and average molecular weights have been calculated as a function of epoxy conversion, leading to a prediction of the gel-point conversion. Analysis of the simulated network further yields other characteristic properties such as concentration of crosslink points, distribution and concentration of elastically active chains, average molecular weight between crosslinks, sol content and mass fraction of pendent chains. A comparison has been made of the properties obtained through simulation with those predicted by the fragment approach alone, which, however, gives only average properties. The Monte Carlo simulation results clearly show that loops and other cyclic structures occur in the gel. This may account for the differences observed between the results of the simulation and the fragment model in the post-gel phase. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
An attempt has been made here to study the sensitivity of the mean and the turbulence structure of the monsoon trough boundary layer to the choice of the constants in the dissipation equation for two stations Delhi and Calcutta, using one-dimensional atmospheric boundary layer model with e-epsilon turbulence closure. An analytical discussion of the problems associated with the constants of the dissipation equation is presented. It is shown here that the choice of the constants in the dissipation equation is quite crucial and the turbulence structure is very sensitive to these constants. The modification of the dissipation equation adopted by earlier studies, that is, approximating the Tke generation (due to shear and buoyancy production) in the epsilon-equation by max (shear production, shear + buoyancy production), can be avoided by a suitable choice of the constants suggested here. The observed turbulence structure is better simulated with these constants. The turbulence structure simulation with the constants recommended by Aupoix et al (1989) (which are interactive in time) for the monsoon region is shown to be qualitatively similar to the simulation obtained with the constants suggested here, thus implying that no universal constants exist to regulate dissipation rate. Simulations of the mean structure show little sensitivity to the type of the closure parameterization between e-l and e-epsilon closures. However the turbulence structure simulation with e-epsilon closure is far better compared to the e-l model simulations. The model simulations of temperature profiles compare quite well with the observations whenever the boundary layer is well mixed (neutral) or unstable. However the models are not able to simulate the nocturnal boundary layer (stable) temperature profiles. Moisture profiles are simulated reasonably better. With one-dimensional models, capturing observed wind variations is not up to the mark.
Resumo:
A differential pulse polarographic (DPP) method based on the adsorption catalytic current in a medium containing chlorate and 8-hydroxyquinoline (oxine) is suggested for the determination of molybdenum(VI). Experimental conditions such as pH and the composition of supporting electrolyte have been optimized to get a linear calibration graph at trace levels of Mo(VI). The sensitivity for molybdenum can be considerably enhanced by this method. The influence of possible interferences on the catalytic current has been investigated. The sensitivity of the method is compared with those obtained for other DPP methods for molybdenum. A detection limit of 1.0 x 10(-8) mol/L has been found.
Resumo:
A finite element simulation of frictionless wedge indentation of a copper strip has been carried out under plane strain conditions. The problem was first modelled using an one-pass contact algorithm. The difficulties associated with using this method to model wedge indentation problems are explained. An alternative procedure which alleviates some of the problems associated with the one-pass contact algorithm is proposed for modelling frictionless wedge indentation. Also, a re-meshing procedure which has to be carried out when the distortion of the elements around the indenter becomes significant, is discussed. A sample problem involving indentation of a 4 mm copper strip by a rigid wedge indenter has been modelled and the results are compared with experimental and theoretical results.
Resumo:
We report the results of Monte Carlo simulation of the phase diagram and oxygen ordering in YBa2Cu3O6+x for low intra-sublattice repulsion. At low temperatures, apart from tetragonal (T), orthorhombic (OI) and 'double cell' ortho II phases, there is evidence for two additional orthorhombic phases labelled here as OIBAR and OIII. At high temperatures, there was no evidence for the decomposition of the OI phase into the T and OI phases. We find qualitative agreement with experimental observations and cluster-variation method results.
Resumo:
Results of performance measurement of a small cooling capacity laboratory model of an adsorption refrigeration system for thermal management of electronics are compiled. This adsorption cooler was built with activated carbon as the adsorbent and HFC 134a as the refrigerant to produce a cooling capacity under 5 W using waste heat up to 90 degrees C. The thermal compression process is obtained from an ensemble of four solid sorption compressors. Parametric study was conducted with cycle times of 16 and 20 min, heat source temperatures from 73 to 87 degrees C and cooling loads from 3 to 4.9W. Overall system performance is analyzed using two indicators, namely, cooling effectiveness and normalized exergetic efficiency. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The authors present the simulation of the tropical Pacific surface wind variability by a low-resolution (R15 horizontal resolution and 18 vertical levels) version of the Center for Ocean-Land-Atmosphere Interactions, Maryland, general circulation model (GCM) when forced by observed global sea surface temperature. The authors have examined the monthly mean surface winds acid precipitation simulated by the model that was integrated from January 1979 to March 1992. Analyses of the climatological annual cycle and interannual variability over the Pacific are presented. The annual means of the simulated zonal and meridional winds agree well with observations. The only appreciable difference is in the region of strong trade winds where the simulated zonal winds are about 15%-20% weaker than observed, The amplitude of the annual harmonics are weaker than observed over the intertropical convergence zone and the South Pacific convergence zone regions. The amplitudes of the interannual variation of the simulated zonal and meridional winds are close to those of the observed variation. The first few dominant empirical orthogonal functions (EOF) of the simulated, as well as the observed, monthly mean winds are found to contain a targe amount of high-frequency intraseasonal variations, While the statistical properties of the high-frequency modes, such as their amplitude and geographical locations, agree with observations, their detailed time evolution does not. When the data are subjected to a 5-month running-mean filter, the first two dominant EOFs of the simulated winds representing the low-frequency EI Nino-Southern Oscillation fluctuations compare quite well with observations. However, the location of the center of the westerly anomalies associated with the warm episodes is simulated about 15 degrees west of the observed locations. The model simulates well the progress of the westerly anomalies toward the eastern Pacific during the evolution of a warm event. The simulated equatorial wind anomalies are comparable in magnitude to the observed anomalies. An intercomparison of the simulation of the interannual variability by a few other GCMs with comparable resolution is also presented. The success in simulation of the large-scale low-frequency part of the tropical surface winds by the atmospheric GCM seems to be related to the model's ability to simulate the large-scale low-frequency part of the precipitation. Good correspondence between the simulated precipitation and the highly reflective cloud anomalies is seen in the first two EOFs of the 5-month running means. Moreover, the strong correlation found between the simulated precipitation and the simulated winds in the first two principal components indicates the primary role of model precipitation in driving the surface winds. The surface winds simulated by a linear model forced by the GCM-simulated precipitation show good resemblance to the GCM-simulated winds in the equatorial region. This result supports the recent findings that the large-scale part of the tropical surface winds is primarily linear.
Resumo:
Discrete vortex simulations of the mixing layer carried out in the past have usually involved large induced velocity fluctuations, and thus demanded rather long time-averaging to obtain satisfactory values of Reynolds stresses and third-order moments. This difficulty has been traced here, in part, to the use of discrete vortices to model what in actuality are continuous vortex sheets. We propose here a novel two-dimensional vortex sheet technique for computing mixing layer flow in the limit of infinite Reynolds number. The method divides the vortex sheet into constant-strength linear elements, whose motions are computed using the Biot-Savart law. The downstream far-field is modelled by a steady vorticity distribution derived by application of conical similarity from the solution obtained in a finite computational domain. The boundary condition on the splitter plate is satisfied rigorously using a doublet sheet. The computed large-scale roll-up of the vortex sheet is qualitatively similar to experimentally obtained shadow-graphs of the plane turbulent mixing layer. The mean streamwise velocity profile and the growth rate agree well with experimental data. The presently computed Reynolds stresses and third-order moments are comparable with experimental and previous vortex-dynamical results, without using any external parameter (such as the vortex core-size) of the kind often used in the latter. The computed autocorrelations are qualitatively similar to experimental results along the top and bottom edges of the mixing layer, and show a well-defined periodicity along the centreline. The accuracy of the present computation is independently established by demonstrating negligibly small changes in the five invariants (including the Hamiltonian) in vortex dynamics.
Resumo:
A two timescale stochastic approximation scheme which uses coupled iterations is used for simulation-based parametric optimization as an alternative to traditional "infinitesimal perturbation analysis" schemes, It avoids the aggregation of data present in many other schemes. Its convergence is analyzed, and a queueing example is presented.
Resumo:
The coherent flame model uses the strain rate to predict reaction rate per unit flame surface area and some procedure that solves for the dynamics of flame surfaces to predict species distributions. The strainrate formula for the reaction rate is obtained from the analytical solution for a flame in a laminar, plane stagnation point flow. Here, the formula's effectiveness is examined by comparisons with data from a direct numerical simulation (DNS) of a round jetlike flow that undergoes transition to turbulence. Significant differences due to general flow features can be understood qualitatively: Model predictions are good in the braids between vortex rings, which are present in the near field of round jets, as the strain rate is extensional and reaction surfaces are isolated. In several other regions, the strain rate is compressive or flame surfaces are folded close together. There, the predictions are poor as the local flow no longer resembles the model flow. Quantitative comparisons showed some discrepancies. A modified, consistent application of the strain-rate solution did not show significant changes in the prediction of mean reaction rate distributions.