995 resultados para 70-506I
(Table 6) Minerals and their aggregates from alteration zones and veins in DSDP Hole 70-504B basalts
Resumo:
Sediments in the area of the Galapagos hydrothermal mounds are divided into two major categories. The first group, pelagic sediments, are nannofossil oozes with varying amounts of siliceous microfossils. The second group are hydrothermal sediments consisting of manganese-oxide crust fragments and green nontronitic clay granules. Hydrothermal sediments occur only in the upper half to two-thirds of the cores and are interbedded and mixed with pelagic sediments. Petrologic evidence indicates that hydrothermal nontronite forms as both a primary precipitate and as a replacement mineral of pre-existing pelagic sediment and hydrothermal manganese-oxide crust fragments. In addition, physical evidence supports chemical equations indicating that the pelagic sediments are being dissolved by hydrothermal solutions. The formation of hydrothermal nontronite is not merely confined to the surface of mounds, but also occurs at depth within their immediate area; hydrothermal nontronite is very likely forming today. Geologically speaking, the mounds and their hydrothermal sediments form almost instantaneously. The Galapagos mounds area is a unique one in the ocean basins, where pelagic sediments can be diagenetically transformed, dissolved, and replaced, possibly within a matter of years.
Resumo:
The monogragh contains results of mineralogicai and geochemical studies of Mesozoic and Cenozoic deposits from the Pacific Ocean collected during Deep Sea Drilling Project. Special attention is paid on the aspects of geochemical history of post-Jurassic sedimentation in the central part of the Northwest Pacific, detailed characteristics of the main stages of sedimentary evolution are given: Early Cretaceons (protooceanic), Late Cretaceons (transitional) and Cenozoic (oceanic). Results of mineralogical and geochemical studies of hydrothermal deposits from the Galapagos Rift are given as well.
Resumo:
Major and trace element compositions of basalts from the lower part of Hole 504B indicate their cogenetic nature. The cored sequence of interlayered pillow lavas and massive lava flows was produced by eruption of lavas, slightly variable in composition. Plagioclase and olivine crystallization in a shallow magma chamber, followed by small-scale fractionation at higher levels, is responsible for these variations. Except in highly fractured zones within the basement, there are systematic variations in the style and degree of rock alteration with depth. Trace element characteristics of altered rocks and secondary minerals indicate that progressive changes in sea water composition occurred as it reacted with basaltic crust.
Resumo:
Ashes occurring both as distinct layers and mixed with pelagic sediments of the hydrothermal mounds lying south of the Galapagos Rift are mainly rhyolitic and basaltic. The ashes, of rhyolitic to intermediate composition, appear to belong to a calc-alkalic series and were probably derived from Plinian eruptions in Ecuador or Colombia. Basaltic ashes are made of nonvesicular sideromelane spalling shards and are of tholeiitic composition. They probably were derived locally from fault scarps. Most rhyolitic and basaltic glass shards studied are fresh except for hydration of the rhyolitic shards. Some shards are severely altered, however. Basaltic ash may be more common in pelagic sediments deposited near accretion zones and may be a source of silica and other elements released during diagenesis
Resumo:
Nontronite, the main metalliferous phase of the Galapagos mounds, occurs at a subsurface depth of ~2-20 m; Mn-oxide material is limited to the upper 2 m of these mounds. The nontronite forms intervals of up to a few metres thickness, consisting essentially of 100% nontronite granules, which alternate with intervals of normal pelagic sediment. The metalliferous phases represent essentially authigenic precipitates, apparently formed in the presence of upwelling basement-derived hydrothermal solutions which dissolved pre-existent pelagic sediment. Electron microprobe analyses of nontronite granules from different core samples indicate that: (1) there is little difference in major-element composition between nontronitic material from varying locations within the mounds; and (2) adjacent granules from a given sample have very similar compositions and are internally homogeneous. This indicates that the granules are composed of a single mineral of essentially constant composition, consistent with relatively uniform conditions of solution Eh and composition during nontronite formation. The Pb-isotopic composition of the nontronite and Mn-oxide sediments indicates that they were formed from solutions which contained variable proportions of basaltic Pb, introduced into pore waters by basement-derived solutions, and of normal-seawater Pb. However, the Sr-isotopic composition of these sediments is essentially indistinguishable from the value for modern seawater. On the basis of 18O/16O ratios, formation temperatures of ~20-30°C have been estimated for the nontronites. By comparison, temperatures of up to 11.5°C at 9 m depth have been directly measured within the mounds and heat flow data suggest present basement-sediment interface temperatures of 15-25°C.