988 resultados para 530
Resumo:
Non-relativistic Hartree-Fock-Slater and relativistic Dirac-Slater self-consistent orbital models are applied for the analysis of the electronic structure of the chalcogen hexafluorides: SF_6, SeF_6, TeF_6 and PoF_6. The molecular eigenfunctions and eigenvalues are generated using the discrete variational method (DVM) with numerical basis functions. The results obtained for SF_6 are compared with other ab initio calculations. Information about relativistic level shifts and spin-orbit splitting has been obtained by comparison between the non-relativistic and relativistic results.
Resumo:
Quasi-molecular X-rays observed in heavy ion collisions are interpreted within a relativistic calculation of correlation diagrams using the Dirac-Slater model. A semiquantitative description of noncharacteristic M X rays is given for the system Au-I.
Resumo:
Multiconfiguration relativistic Dirac-Fock (MCDF) values were calculated for the first five ionization potentials of element 105 (unnilpentium) and of the other group 5b elements (V, Nb, and Ta). Some of these ionization potentials in electron volts (eV) with uncertainties are: 105(0), 7.4±0.4; 105(1 +), 16.3 ±0.2; 105(2 +), 24.3 ± 0.2; 105(3 + ), 34.9 ± 0.5; and 105(4 + ), 44.9 ± 0.1. Ionization potentials for Ta(1+), Ta(2 +), and Ta(3 + ) were also calculated. Accurate experimental values for these ionization potentials are not available. Ionic radii are presented for the 2+, 3+, 4 +, and 5+ ions of element 105 and for the + 2 ions of vanadium and niobium. These radii for vanadium and niobium are not available elsewhere. The ionization potentials and ionic radii obtained are used to determine some standard electrode potentials for element 105. Born-Haber cycles and a form of the Born equation for the Gibbs free energy of hydration of ions were used to calculate the standard electrode potentials.
Resumo:
To study the complex formation of group 5 elements (Nb, Ta, Ha, and pseudoanalog Pa) in aqueous HCI solutions of medium and high concentrations the electronic structures of anionic complexes of these elements [MCl_6]^-, [MOCl_4]^-, [M(OH)-2 Cl_4]^-, and [MOCl_5]^2- have been calculated using the relativistic Dirac-Slater Discrete-Variational Method. The charge density distribution analysis has shown that tantalum occupies a specific position in the group and has the highest tendency to form the pure halide complex, [TaCl_6-. This fact along with a high covalency of this complex explains its good extractability into aliphatic amines. Niobium has equal trends to form pure halide [NbCl_6]^- and oxyhalide [NbOCl_5]^2- species at medium and high acid concentrations. Protactinium has a slight preference for the [PaOCl_5]^2- form or for the pure halide complexes with coordination number higher than 6 under these conditions. Element 105 at high HCl concentrations will have a preference to form oxyhalide anionic complex [HaOCl_5]^2- rather than [HaCl_6]^-. For the same sort of anionic oxychloride complexes an estimate has been done of their partition between the organic and aqueous phases in the extraction by aliphatic amines, which shows the following succession of the partition coefficients: P_Nb < P_Ha < P_Pa.
Resumo:
The electronic structure of the group 6 oxyanions [MO_4]^2-, where M = Cr, Mo, W, and element 106 have been calculated using the Dirac-Slater Discrete Variational method. Results of the calculations show a relative decrease in the metal-oxygen bond strengths for the [E106O_4]^2- ion in the solid state compared to that for the [WO_4]^2- anion. Calculated energies of the electronic charge-transfer transitions are indicative of a strong possible luminescence of [El06O_4]^2- in the blue-violet area. In solutions [El06O_4]^2- will be the most stable ion out of the entire series. Estimated reduction potential E^0 (El06O^2-_4/E106O^3-_4) equal to -1.60V shows only a slightly increased stability of the +6 oxidation state for element 106 in comparison with W.
Resumo:
Femtosecond laser pulses are applied to the study of the dynamics and the pathways of multiphoton-induced ionization, autoionization, and fragmentation of Na_2 in molecular-beam experiments. In particular, we report on first results obtained studying electronic autoionization (leading to Na_2{^+} + {e ^-}) and autoionization-induced fragmentation (leading to Na{^+} + Na + {e ^-}) of a bound doubly excited molecular state. The final continuum states are analyzed by photoelectron spectroscopy and by measuring the mass and the released kinetic energy of the corresponding ionic fragments with a time-of-flight arrangement.
Resumo:
Femtosecond time-resolved techniques with KETOF (kinetic energy time-of-flight) detection in a molecular beam are developed for studies of the vectorial dynamics of transition states. Application to the dissociation reaction of IHgI is presented. For this system, the complex [I---Hg---I](++)* is unstable and, through the symmetric and asymmetric stretch motions, yields different product fragments: [I---Hg---I](++)* -> HgI(X^2/sigma^+) + I(^2P_3/2) [or I*(^2P_l/2)] (1a); [I---Hg---I](++)* -> Hg(^1S_0) + I(^2P_3/2) + I(^2P_3/2) [or I* (^2P_1/2)] (1 b). These two channels, (1a) and (1b), lead to different kinetic energy distributions in the products. It is shown that the motion of the wave packet in the transition-state region can be observed by MPI mass detection; the transient time ranges from 120 to 300 fs depending on the available energy. With polarized pulses, the vectorial properties (transition moments alignment relative to recoil direction) are studied for fragment separations on the femtosecond time scale. The results indicate the nature of the structure (symmetry properties) and the correlation to final products. For 311-nm excitation, no evidence of crossing between the I and I* potentials is found at the internuclear separations studied. (Results for 287-nm excitation are also presented.) Molecular dynamics simulations and studies by laser-induced fluorescence support these findings.
Resumo:
Real-time studies of the dynamics were performed on the reaction of HgI_2 in a molecular beam. Excitation was by either one or multi pump photons (311 nm), leading to two separate sets of dynamics, each of which could be investigated by a time-delayed probe laser (622 nm) that ionized the parent molecule and the fragments by REMPI processes. These dynamics were distinguished by combining the information from transients taken at each mass (HgI_2, HgI, I_2, Hg, and I) with the results of pump (and probe) power dependence studies on each mass. A method of plotting the slope of the intensity dependence against the pump-probe time delay proved essential. In the preceding publication, we detailed the dynamics of the reaction initiated by a one photon excitation to the A-continuum. Here, we present studies of higher-energy states. Multiphoton excitation accesses predissociative states of HgI_2, for which there are crossings into the symmetric and asymmetric stretch coordinates. The dynamics of these channels, which lead to atomic (I or Hg) and diatomic (HgI) fragments, are discussed and related to the nature of the intermediates along the reaction pathway.
Resumo:
We report on the first femtosecond time-resolved experiments in cluster physics. The photofragmentation dynamics of small sodium cluster ions Na_n ^+ have been studied with pump-probe techniques. Ultrashort laser pulses of 60-fs duration are employed to photoionize the sodium clusters and to probe the photofragments. We find that the ejection of neutral dimer Na_2 and, observed for the first time, neutral trimer Na_3 photofragments occur on ultrashort time scales of 2.5 and 0.4 ps, respectively. This and the absence of cluster heating reveals that direct photoinduced fragmentation processes are important at short times rather than the statistical unimolecular decay.
Resumo:
The real-time dynamics of Na_n (n=3-21) cluster multiphoton ionization and fragmentation has been studied in beam experiments applying femtosecond pump-probe techniques in combination with ion and electron spectroscopy. Three dimensional wave packet motions in the trimer Na_3 ground state X and excited state B have been observed. We report the first study of cluster properties (energy, bandwidth and lifetime of intermediate resonances Na_n^*) with femtosecond laser pulses. The observation of four absorption resonances for the cluster Na_8 with different energy widths and different decay patterns is more difficult to interpret by surface plasmon like resonances than by molecular structure and dynamics. Timeresolved fragmentation of cluster ions Na_n^+ indicates that direct photo-induced fragmentation processes are more important at short times than the statistical unimolecular decay.
Resumo:
The dynamics of molecular multiphoton ionization and fragmentation of a diatomic molecule (Na_2) have been studied in molecular beam experiments. Femtosecond laser pulses from an amplified colliding-pulse mode-locked (CPM) ring dye laser are employed to induce and probe the molecular transitions. The final continuum states are analyzed by photoelectron spectroscopy, by ion mass spectrometry and by measuring the kinetic energy of the formed ionic fragments. Pump-probe spectra employing 70-fs laser pulses have been measured to study the time dependence of molecular multiphoton ionization and fragmentation. The oscillatory structure of the transient spectra showing the dynamics on the femtosecond time scale can best be understood in terms of the motion of wave packets in bound molecular potentials. The transient Na_2^+ ionization and the transient Na^+ fragmentation spectra show that contributions from direct photoionization of a singly excited electronic state and from excitation and autoionization of a bound doubly excited molecular state determine the time evolution of molecular multiphoton ionization.
Resumo:
We report here the first experimental study of femtosecond time-resolved molecular multiphoton ionization. Femtosecond pump-probe techniques are combined with time-of-flight spectroscopy to measure transient ionization spectra of Na_2 in a molecular-beam experiment. The wave-packet motions in different molecular potentials show that incoherent contributions from direct photoionization of a singly excited state and from excitation and autoionization of a bound doubly excited molecular state determine the observed transient ionization signal.
Resumo:
The real-time dynamics of molecular (Na_2 . Na_3) and cluster Na_n (n=4-2l) multiphoton ionization and -fragmentation has been studied in beam experiments applying femtosecond pump-probe techniques in combination with ion and electron spectroscopy. Wave packet motion in the dimer Na_2 reveals two independent multiphoton ionization processes while the higher dimensional motion in the trimer Na_3 reflects the chaotic vibrational motion in this floppy system. The first studies of cluster properties (energy, bandwidth and lifetime of intermediate resonances Na^*_n) ) with femtosecond laser pulses give a striking illustration of the transition from "molecule-like" excitations to "surfaceplasma"-like resonances for increasing cluster sizes. Time-resolved fragmentation of cluster ions Na_n^* indicate that direct photo-induced fragmentation processes are more important at short times than the statistical unimolecular decay.