940 resultados para 5-Aminolevulinic acid
Resumo:
OBJECTIVE: Endocannabinoid levels are elevated in human and mouse atherosclerosis, but their causal role is not well understood. Therefore, we studied the involvement of fatty acid amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in atherosclerotic plaque vulnerability. METHODS AND RESULTS: We assessed atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) and ApoE(-/-)FAAH(-/-) mice. Before and after 5, 10, and 15 weeks on high-cholesterol diet, we analyzed weight, serum cholesterol, and endocannabinoid levels, and atherosclerotic lesions in thoracoabdominal aortas and aortic sinuses. Serum levels of FAAH substrates anandamide, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were 1.4- to 2-fold higher in case of FAAH deficiency. ApoE(-/-)FAAH(-/-) mice had smaller plaques with significantly lower content of smooth muscle cells, increased matrix metalloproteinase-9 expression, and neutrophil content. Circulating and bone marrow neutrophil counts were comparable between both genotypes, whereas CXC ligand1 levels were locally elevated in aortas of FAAH-deficient mice. We observed enhanced recruitment of neutrophils, but not monocytes, to large arteries of ApoE(-/-) mice treated with FAAH inhibitor URB597. Spleens of ApoE(-/-)FAAH(-/-) mice had reduced CD4+FoxP3+regulatory T-cell content, and in vitro stimulation of splenocytes revealed significantly elevated interferon-γ and tumor necrosis factor-α production in case of FAAH deficiency. CONCLUSIONS: Increased anandamide and related FAAH substrate levels are associated with the development of smaller atherosclerotic plaques with high neutrophil content, accompanied by an increased proinflammatory immune response.
Resumo:
BACKGROUND: Mortality is increased after a hip fracture, and strategies that improve outcomes are needed. METHODS: In this randomized, double-blind, placebo-controlled trial, 1065 patients were assigned to receive yearly intravenous zoledronic acid (at a dose of 5 mg), and 1062 patients were assigned to receive placebo. The infusions were first administered within 90 days after surgical repair of a hip fracture. All patients received supplemental vitamin D and calcium. The median follow-up was 1.9 years. The primary end point was a new clinical fracture. RESULTS: The rates of any new clinical fracture were 8.6% in the zoledronic acid group and 13.9% in the placebo group, a 35% risk reduction (P = 0.001); the respective rates of a new clinical vertebral fracture were 1.7% and 3.8% (P = 0.02), and the respective rates of new nonvertebral fractures were 7.6% and 10.7% (P = 0.03). In the safety analysis, 101 of 1054 patients in the zoledronic acid group (9.6%) and 141 of 1057 patients in the placebo group (13.3%) died, a reduction of 28% in deaths from any cause in the zoledronic-acid group (P = 0.01). The most frequent adverse events in patients receiving zoledronic acid were pyrexia, myalgia, and bone and musculoskeletal pain. No cases of osteonecrosis of the jaw were reported, and no adverse effects on the healing of fractures were noted. The rates of renal and cardiovascular adverse events, including atrial fibrillation and stroke, were similar in the two groups. CONCLUSIONS: An annual infusion of zoledronic acid within 90 days after repair of a low-trauma hip fracture was associated with a reduction in the rate of new clinical fractures and improved survival. (ClinicalTrials.gov number, NCT00046254.).
Resumo:
In oviparous vertebrates vitellogenin, the precursor of the major yolk proteins, is synthesized in the liver of mature females under the control of estrogen. We have established the organization and primary structure of the 5' end region of the Xenopus laevis vitellogenin A2 gene and of the major chicken vitellogenin gene. The first three homologous exons have exactly the same length in both species, namely 53, 21 and 152 nucleotides, and present an overall sequence homology of 60%. In both species, the 5'-non-coding region of the vitellogenin mRNA measures only 13 nucleotides, nine of which are conserved. In contrast, the corresponding introns of the Xenopus and the chicken vitellogenin gene show no significant sequence homology. Within the 500 nucleotides preceding the 5' end of the genes, at least six blocks with sequence homologies of greater than 70% were detected. It remains to be demonstrated which of these conserved sequences, if any, are involved in the hormone-regulated expression of the vitellogenin genes.
Resumo:
Cilengitide, a cyclicized arginine-glycine-aspartic acid-containing pentapeptide, potently blocks ανβ3 and ανβ5 integrin activation. Integrins are upregulated in many malignancies and mediate a wide variety of tumor-stroma interactions. Cilengitide and other integrin-targeting therapeutics have preclinical activity against many cancer subtypes including glioblastoma (GBM), the most common and deadliest CNS tumor. Cilengitide is active against orthotopic GBM xenografts and can augment radiotherapy and chemotherapy in these models. In Phase I and II GBM trials, cilengitide and the combination of cilengitide with standard temozolomide and radiation demonstrate consistent antitumor activity and a favorable safety profile. Cilengitide is currently under evaluation in a pivotal, randomized Phase III study (Cilengitide in Combination With Temozolomide and Radiotherapy in Newly Diagnosed Glioblastoma Phase III Randomized Clinical Trial [CENTRIC]) for newly diagnosed GBM. In addition, randomized controlled Phase II studies with cilengitide are ongoing for non-small-cell lung cancer and squamous cell carcinoma of the head and neck. Cilengitide is the first integrin inhibitor in clinical Phase III development for oncology.
Resumo:
Phytic acid (PA) is poorly digested by humans and monogastric animals and negatively affects human/animal nutrition and the environment. Rice mutants with reduced PA content have been developed but are often associated with reduced seed weight and viability, lacking breeding value. In the present study, a new approach was explored to reduce seed PA while attaining competitive yield. The OsMRP5 gene, of which mutations are known to reduce seed PA as well as seed yield and viability, was down-regulated specifically in rice seeds by using an artificial microRNA driven by the rice seed specific promoter Ole18. Seed PA contents were reduced by 35.8-71.9% in brown rice grains of transgenic plants compared to their respective null plants (non-transgenic plants derived from the same event). No consistent significant differences of plant height or number of tillers per plant were observed, but significantly lower seed weights (up to 17.8% reduction) were detected in all transgenic lines compared to null plants, accompanied by reductions of seed germination and seedling emergence. It was observed that the silencing of the OsMRP5 gene increased the inorganic P (Pi) levels (up to 7.5 times) in amounts more than the reduction of PA-P in brown rice. This indicates a reduction in P content in other cellular compounds, such as lipids and nucleic acids, which may affect overall seed development. Put together, the present study demonstrated that seed specific silencing of OsMRP5 could significantly reduce the PA content and increase Pi levels in seeds; however, it also significantly lowers seed weight in rice. Discussions were made regarding future directions towards producing agronomically competitive and nutritionally valuable low PA rice.
Resumo:
Purpose: Plasma adiponectin and serum uric acid (SUA) levels are negatively correlated. To better understand the possible mechanisms linking adiponectin and uric acid, we analyzed whether the association between adiponectin and SUA differed by hypertension status (or blood pressure level) and by sex. Methods and materials: We analyzed data from the populationbased CoLaus study (Switzerland). Fasting plasma adiponectin levels were assessed by ELISA and SUA by uricase-PAP. Blood pressure (BP) was measured using a validated automated device and hypertension was defined as having office BP 140/90 mm Hg or being on current antihypertensive treatment. Results: In the 2897 men and 3181 women, aged 35-74, BMI (mean ± SD) was 26.6 ± 4.0 and 25.1 ± 4.8 Kg/m2, systolic blood pressure (SBP) was 132.2 ± 16.6 and 124.8 ± 18.3 mm Hg, median (interquartile range) plasma adiponectin was 6.2 (4.1-9.2) and 10.6 (6.9-15.4) mg/dL, and hypertension prevalence was 42.0% and 30.2%, respectively. The age- and BMI- adjusted partial correlation coefficients between log-adiponectin and SUA were 0.09 and 0.06 in normotensive men and women (P <0.01), and 0.004 (P = 0.88) and 0.15 (P <0.001) in hypertensive men and women, respectively. In median regression adjusted for BMI, insulin, smoking, alcohol consumption, menopausal status and HDL-cholesterol, there was a significant three-way interaction between SUA, SBP and sex for their effect on adiponectin (dependent variable, P = 0.005), as well as interactions between SBP and sex (P = 0.014) and between SUA and sex (P = 0.033). Conclusion: Plasma adiponectin and SUA are negatively associated, independently of BMI and insulin, in a population-based study in Caucasians. However, BP modifies this inverse relationship, as it was significant mainly in women with elevated BP. This observation suggests that the link between adiponectin and SUA may be mediated by sex hormones and the hypertension status.
Resumo:
Degradation of unsaturated fatty acids through the peroxisomal beta-oxidation pathway requires the participation of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. The auxiliary enzyme delta(3,5),delta(2,4)-dienoyl-coenzyme A (CoA) isomerase has been well studied in yeast (Saccharomyces cerevisiae) and mammals, but no plant homolog had been identified and characterized at the biochemical or molecular level. A candidate gene (At5g43280) was identified in Arabidopsis (Arabidopsis thaliana) encoding a protein showing homology to the rat (Rattus norvegicus) delta(3,5),delta(2,4)-dienoyl-CoA isomerase, and possessing an enoyl-CoA hydratase/isomerase fingerprint as well as aspartic and glutamic residues shown to be important for catalytic activity of the mammalian enzyme. The protein, named AtDCI1, contains a peroxisome targeting sequence at the C terminus, and fusion of a fluorescent protein to AtDCI1 directed the chimeric protein to the peroxisome in onion (Allium cepa) cells. AtDCI1 expressed in Escherichia coli was shown to have delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vitro. Furthermore, using the synthesis of polyhydroxyalkanoate in yeast peroxisomes as an analytical tool to study the beta-oxidation cycle, expression of AtDCI1 was shown to complement the yeast mutant deficient in the delta(3,5),delta(2,4)-dienoyl-CoA isomerase, thus showing that AtDCI1 is also appropriately targeted to the peroxisome in yeast and has delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vivo. The AtDCI1 gene is expressed constitutively in several tissues, but expression is particularly induced during seed germination. Proteins showing high homology with AtDCI1 are found in gymnosperms as well as angiosperms belonging to the Monocotyledon or Dicotyledon classes.
Resumo:
The purpose of this study was to investigate the effect of glucose administered with amino acids before and during exercise on hepatic ureagenesis. Eight mongrel dogs subjected to treadmill running for 150 minutes at 10 km/h on a 12% incline were intravenously infused with either a mixture of amino acids and glucose (AAG) or amino acids alone (AA). The infusion was started 60 minutes before exercise and continued until the end of exercise. The rate of urinary urea excretion increased after infusion of both AAG and AA. However, the rate of urinary urea excretion was significantly lower in the AAG group versus the AA group during the first 1.5 hours of the recovery period ([R0 to R90] 514+/-24 v 637+/-24 mg/h, mean+/-SE, P < .05). Moreover, hepatic urea output was decreased during AAG versus AA infusion (229+/-62 v 367+/-55 microg/kg/min, P < .05). Hepatic glucose production during exercise was also significantly lower in AAG versus AA infusion (354+/-54 v 589+/-56 mg/kg, P < .05). On the other hand, no difference was observed in hepatic total amino acid uptake between the groups. Thus, these results indicate that AAG administered before and during exercise appears to reduce hepatic ureagenesis due to reduced hepatic gluconeogenesis as compared with administration of AA alone. These findings also suggest that nitrogen retention is enhanced by glucose administered during exercise.
Resumo:
This project was undertaken jointly with a project supported by the Iowa Corn Promotion Board. Together the projects aimed at producing the organic acids, propionic acid and acetic acid, by fermentation. The impacts were to provide agriculturally-based alternatives to production of these acids, currently produced mainly as petrochemicals. The potentially high-demand use for acetic acid is as the "acetate" in Calcium Magnesium Acetate (CMA), the non-corrosive road deicer. Fermentation was, however, far from being an economically acceptable alternative. Gains were made in this work toward making this a feasible route. These advances included (1) development of a variant strain of propionibacteria capable of producing higher concentrations of acids; (2) comparison of conditions for several ways of cultivating free cells and establishment of the relative benefits of each; (3) achievement of the highest productivity in fermentations using immobilized cells; (4) identification of corn steep liquor as a lower cost substrate for the fermentation; (5) application of a membrane extraction system for acid recovery and reduction of product inhibition; and (6) initial use of more detailed economic analysis of process alternatives to guide in the identification of where the greatest payback potential is for future research. At this point, the fermentation route to these acids using the propionibacteria is technically feasible, but economically unfeasible. Future work with integration of the above process improvements can be expected to lead to further gains in economics. However, such work can not be expected to make CMA a less expensive deicer than common road salt.
Resumo:
PURPOSE. Knowledge of genetic factors predisposing to age-related cataract is very limited. The aim of this study was to identify DNA sequences that either lead to or predispose for this disease. METHODS. The candidate gene SLC16A12, which encodes a solute carrier of the monocarboxylate transporter family, was sequenced in 484 patients with cataract (134 with juvenile cataract, 350 with age-related cataract) and 190 control subjects. Expression studies included luciferase reporter assay and RT-PCR experiments. RESULTS. One patient with age-related cataract showed a novel heterozygous mutation (c.-17A>G) in the 5'untranslated region (5'UTR). This mutation is in cis with the minor G-allele of the single nucleotide polymorphism (SNP) rs3740030 (c.-42T/G), also within the 5'UTR. Using a luciferase reporter assay system, a construct with the patient's haplotype caused a significant upregulation of luciferase activity. In comparison, the SNP G-allele alone promoted less activity, but that amount was still significantly higher than the amount of the common T-allele. Analysis of SLC16A12 transcripts in surrogate tissue demonstrated striking allele-specific differences causing 5'UTR heterogeneity with respect to sequence and quantity. These differences in gene expression were mirrored in an allele-specific predisposition to age-related cataract, as determined in a Swiss population (odds ratio approximately 2.2; confidence intervals, 1.23-4.3). CONCLUSIONS. The monocarboxylate transporter SLC16A12 may contribute to age-related cataract. Sequences within the 5'UTR modulate translational efficiency with pathogenic consequences.
Resumo:
Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.
Resumo:
D-lactic acid in urine originates mainly from bacterial production in the intestinal tract. Increased D-lactate excretion as observed in patients affected by short bowel syndrome or necrotizing enterocolitis reflects D-lactic overproduction. Therefore, there is a need for a reliable and sensitive method able to detect D-lactic acid even at subclinical elevation levels. A new and highly sensitive method for the simultaneous determination of L- and D-lactic acid by a two-step procedure has been developed. This method is based on the concentration of lactic acid enantiomers from urine by supported liquid extraction followed by high-performance liquid chromatography-tandem mass spectrometry. The separation was achieved by the use of an Astec Chirobiotic? R chiral column under isocratic conditions. The calibration curves were linear over the ranges of 2-400 and 0.5-100 µmol/L respectively for L- and D-lactic acid. The limit of detection of D-lactic acid was 0.125 µmol/L and its limit of quantification was 0.5 µmol/L. The overall accuracy and precision were well within 10% of the nominal values. The developed method is suitable for production of reference values in children and could be applied for accurate routine analysis.
Resumo:
Agricultural workers are exposed to folpet, but biomonitoring data are limited. Phthalimide (PI), phthalamic acid (PAA), and phthalic acid (PA) are the ring metabolites of this fungicide according to animal studies, but they have not yet been measured in human urine as metabolites of folpet, only PA as a metabolite of phthalates. The objective of this study was thus to develop a reliable gas chromatography-tandem mass spectrometry (GC-MS) method to quantify the sum of PI, PAA, and PA ring-metabolites of folpet in human urine. Briefly, the method consisted of adding p-methylhippuric acid as an internal standard, performing an acid hydrolysis at 100 °C to convert ring-metabolites into PA, purifying samples by ethyl acetate extraction, and derivatizing with N,O-bis(trimethylsilyl)trifluoro acetamide prior to GC-MS analysis. The method had a detection limit of 60.2 nmol/L (10 ng/mL); it was found to be accurate (mean recovery, 97%), precise (inter- and intra-day percentage relative standard deviations <13%), and with a good linearity (R (2) > 0.98). Validation was conducted using unexposed peoples urine spiked at concentrations ranging from 4.0 to 16.1 μmol/L, along with urine samples of volunteers dosed with folpet, and of exposed workers. The method proved to be (1) suitable and accurate to determine the kinetic profile of PA equivalents in the urine of volunteers orally and dermally administered folpet and (2) relevant for the biomonitoring of exposure in workers.
Resumo:
Tyrosine kinase receptors lead to rapid activation of phosphatidylinositol 3-kinase (PI3 kinase) and the subsequent formation of phosphatidylinositides (PtdIns) 3,4-P2 and PtdIns 3,4, 5-P3, which are thought to be involved in signaling for glucose transporter GLUT4 translocation, cytoskeletal rearrangement, and DNA synthesis. However, the specific role of each of these PtdIns in insulin and growth factor signaling is still mainly unknown. Therefore, we assessed, in the current study, the effect of SH2-containing inositol phosphatase (SHIP) expression on these biological effects. SHIP is a 5' phosphatase that decreases the intracellular levels of PtdIns 3,4,5-P3. Expression of SHIP after nuclear microinjection in 3T3-L1 adipocytes inhibited insulin-induced GLUT4 translocation by 100 +/- 21% (mean +/- the standard error) at submaximal (3 ng/ml) and 64 +/- 5% at maximal (10 ng/ml) insulin concentrations (P < 0.05 and P < 0.001, respectively). A catalytically inactive mutant of SHIP had no effect on insulin-induced GLUT4 translocation. Furthermore, SHIP also abolished GLUT4 translocation induced by a membrane-targeted catalytic subunit of PI3 kinase. In addition, insulin-, insulin-like growth factor I (IGF-I)-, and platelet-derived growth factor-induced cytoskeletal rearrangement, i.e., membrane ruffling, was significantly inhibited (78 +/- 10, 64 +/- 3, and 62 +/- 5%, respectively; P < 0.05 for all) in 3T3-L1 adipocytes. In a rat fibroblast cell line overexpressing the human insulin receptor (HIRc-B), SHIP inhibited membrane ruffling induced by insulin and IGF-I by 76 +/- 3% (P < 0.001) and 68 +/- 5% (P < 0.005), respectively. However, growth factor-induced stress fiber breakdown was not affected by SHIP expression. Finally, SHIP decreased significantly growth factor-induced mitogen-activated protein kinase activation and DNA synthesis. Expression of the catalytically inactive mutant had no effect on these cellular responses. In summary, our results show that expression of SHIP inhibits insulin-induced GLUT4 translocation, growth factor-induced membrane ruffling, and DNA synthesis, indicating that PtdIns 3,4,5-P3 is the key phospholipid product mediating these biological actions.
Resumo:
Primary roots of intact maize seedlings (cv. LG11) were pretreated when kept vertically (1 or 2 in the dark) with a droplet of buffer solution containing ABA (at different concentrations) applied to the root tip. Then, apical root segments were prepared and placed horizontally in both light and darkness. The downward curvature was measured. In the light, curvature was greater than in darkness and ABA (5×10−5 mol·dm−3) significantly enhanced the curvature in both darkness and light. The amplitude of the increase in the gravireaction was found to be dependent on the ABA concentration and the duration of the pretreatment.