969 resultados para 3D sensor
Resumo:
A set of GPR profiles have been recorded in order to determine the 3D geometry of a prograding delta-front sandbody (Roda sandstone formation, Eocene, Graus-Tremp basin). Common Mid Points (CMP) also have been recorded to obtain the velocity of the electromagnetic wave in ground. In order to build the topsurface of a 3D prism a set of topographic points have been acquired. Most of the GPR profiles are oriented parallel to the progradation direction (NNE-SSW) and show the expected geometries. The 3D prism has been built from the individual profiles, which shows the three dimensional geometry of the sandy lithosome.
Resumo:
The availability of stem cells is of great promise to study early developmental stages and to generate adequate cells for cell transfer therapies. Although many researchers using stem cells were successful in dissecting intrinsic and extrinsic mechanisms and in generating specific cell phenotypes, few of the stem cells or the differentiated cells show the capacity to repair a tissue. Advances in cell and stem cell cultivation during the last years made tremendous progress in the generation of bona fide differentiated cells able to integrate into a tissue after transplantation, opening new perspectives for developmental biology studies and for regenerative medicine. In this review, we focus on the main works attempting to create in vitro conditions mimicking the natural environment of CNS structures such as the neural tube and its development in different brain region areas including the optic cup. The use of protocols growing cells in 3D organoids is a key strategy to produce cells resembling endogenous ones. An emphasis on the generation of retina tissue and photoreceptor cells is provided to highlight the promising developments in this field. Other examples are presented and discussed, such as the formation of cortical tissue, the epithelial gut or the kidney organoids. The generation of differentiated tissues and well-defined cell phenotypes from embryonic stem (ES) cells or induced pluripotent cells (iPSCs) opens several new strategies in the field of biology and regenerative medicine. A 3D organ/tissue development in vitro derived from human cells brings a unique tool to study human cell biology and pathophysiology of an organ or a specific cell population. The perspective of tissue repair is discussed as well as the necessity of cell banking to accelerate the progress of this promising field.
Resumo:
Aquest projecte s’emmarca dins de l’àmbit de la visió per computador, concretament en la utilització de dades de profunditat obtingudes a través d’un emissor i sensor de llum infraroja.El propòsit principal d’aquest projecte és mostrar com adaptar aquestes tecnologies, a l’abast de qualsevol particular, de forma que un usuari durant la pràctica d’una activitat esportiva concreta, rebi informació visual continua dels moviments i gestos incorrectes que està realitzant, en base a uns paràmetres prèviament establerts.L’objectiu d’aquest projecte consisteix en fer una lectura constant en temps real d’una persona practicant una selecció de diverses activitats esportives estàtiques utilitzant un sensor Kinect. A través de les dades obtingudes pel sensor Kinect i utilitzant les llibreries de “skeleton traking” proporcionades per Microsoft s’haurà d’interpretar les dades posturals obtingudes per cada tipus d’esport i indicar visualment i d’una manera intuïtiva els errors que està cometent en temps real, de manera que es vegi clarament a quina part del seu cos realitza un moviment incorrecte per tal de poder corregir-lo ràpidament. El entorn de desenvolupament que s’utilitza per desenvolupar aquesta aplicació es Microsoft Viusal Studio 2010.El llenguatge amb el qual es treballarà sobre Microsoft Visual Studio 2010 és C#
Resumo:
Nowadays, Wireless Sensor Networks (WSN) arealready a very important data source to obtain data about the environment. Thus, they are key to the creation of Cyber-Physical Systems (CPS). Given the popularity of P2P middlewares as ameans to efficiently process information and distribute services, being able to integrate them to WSN¿s is an interesting proposal. JXTA is a widely used P2P middleware that allows peers to easily exchange information, heavily relying on its main architectural highlight, the capability to organize peers with common interests into peer groups. However, right now, approaches to integrate WSNs to a JXTA network seldom take advantage of peer groups. For this reason, in this paper we present jxSensor, an integrationlayer for sensor motes which facilitates the deployment of CPS¿s under this architecture. This integration has been done taking into account JXTA¿s idiosyncrasies and proposing novel ideas,such as the Virtual Peer, a group of sensors that acts as a single entity within the peer group context.
Resumo:
Abstract Objective: To compare the diagnostic performance of the three-dimensional turbo spin-echo (3D TSE) magnetic resonance imaging (MRI) technique with the performance of the standard two-dimensional turbo spin-echo (2D TSE) protocol at 1.5 T, in the detection of meniscal and ligament tears. Materials and Methods: Thirty-eight patients were imaged twice, first with a standard multiplanar 2D TSE MR technique, and then with a 3D TSE technique, both in the same 1.5 T MRI scanner. The patients underwent knee arthroscopy within the first three days after the MRI. Using arthroscopy as the reference standard, we determined the diagnostic performance and agreement. Results: For detecting anterior cruciate ligament tears, the 3D TSE and routine 2D TSE techniques showed similar values for sensitivity (93% and 93%, respectively) and specificity (80% and 85%, respectively). For detecting medial meniscal tears, the two techniques also had similar sensitivity (85% and 83%, respectively) and specificity (68% and 71%, respectively). In addition, for detecting lateral meniscal tears, the two techniques had similar sensitivity (58% and 54%, respectively) and specificity (82% and 92%, respectively). There was a substantial to almost perfect intraobserver and interobserver agreement when comparing the readings for both techniques. Conclusion: The 3D TSE technique has a diagnostic performance similar to that of the routine 2D TSE protocol for detecting meniscal and anterior cruciate ligament tears at 1.5 T, with the advantage of faster acquisition.
Resumo:
This paper proposes an experiment to be performed in both instrumental analysis and experimental physical-chemistry curricular disciplines in order to open options to develop challenging basic research activities. Thus the experimental procedures and the results obtained in the preparation of electrodeposited lead dioxide onto graphite and its evaluation as potentiometric sensor for H3O+ and Pb2+ ions, are presented. The data obtained in acid-base titrations were compared with those of the traditional combination glass electrode at the same conditions. Although a linear sub-Nernstian response to free hydrogen ions was observed for the electrodeposited PbO2 electrode, a good agreement was obtained between them. Working as lead(II) sensing electrode, the PbO2 showed a linear sub-Nernstian behavior at total Pb2+ concentrations ranging from 3,5 x 10-4 to 3,0 x 10-2 mol/L in nitrate media. For the redox couple PbO2/Pb(II) the operational slope converges to the theoretical one, as the acidity of the working solution increases.
Resumo:
The neuronal calcium sensor proteins GCAPs (guanylate cyclase activating proteins) switch between Ca2+-free and Ca2+-bound conformational states and confer calcium sensitivity to guanylate cyclase at retinal photoreceptor cells. They play a fundamental role in light adaptation by coupling the rate of cGMP synthesis to the intracellular concentration of calcium. Mutations in GCAPs lead to blindness. The importance of functional EF-hands in GCAP1 for photoreceptor cell integrity has been well established. Mutations in GCAP1 that diminish its Ca2+ binding affinity lead to cell damage by causing unabated cGMP synthesis and accumulation of toxic levels of free cGMP and Ca2+. We here investigate the relevance of GCAP2 functional EF-hands for photoreceptor cell integrity. By characterizing transgenic mice expressing a mutant form of GCAP2 with all EF-hands inactivated (EF(-)GCAP2), we show that GCAP2 locked in its Ca2+-free conformation leads to a rapid retinal degeneration that is not due to unabated cGMP synthesis. We unveil that when locked in its Ca2+-free conformation in vivo, GCAP2 is phosphorylated at Ser201 and results in phospho-dependent binding to the chaperone 14-3-3 and retention at the inner segment and proximal cell compartments. Accumulation of phosphorylated EF(-)GCAP2 at the inner segment results in severe toxicity. We show that in wildtype mice under physiological conditions, 50% of GCAP2 is phosphorylated correlating with the 50% of the protein being retained at the inner segment. Raising mice under constant light exposure, however, drastically increases the retention of GCAP2 in its Ca2+-free form at the inner segment. This study identifies a new mechanism governing GCAP2 subcellular distribution in vivo, closely related to disease. It also identifies a pathway by which a sustained reduction in intracellular free Ca2+ could result in photoreceptor damage, relevant for light damage and for those genetic disorders resulting in 'equivalent-light'' scenarios.
Resumo:
This paper presents a novel technique to align partial 3D reconstructions of the seabed acquired by a stereo camera mounted on an autonomous underwater vehicle. Vehicle localization and seabed mapping is performed simultaneously by means of an Extended Kalman Filter. Passive landmarks are detected on the images and characterized considering 2D and 3D features. Landmarks are re-observed while the robot is navigating and data association becomes easier but robust. Once the survey is completed, vehicle trajectory is smoothed by a Rauch-Tung-Striebel filter obtaining an even better alignment of the 3D views and yet a large-scale acquisition of the seabed
Resumo:
Tämä insinöörityö kertoo Java 3D -ohjelmointirajapinnan perusteista ja sen käytöstä kolmiulotteisen tietokonegrafiikan luomisessa Java ohjelmointikielellä. Java 3D on rajapinta Java-ohjelmointikielelle, jonka avulla voidaan luoda ja käsitellä kolmiulotteista tietokonegrafiikkaa. Java 3D -rajapinnan avulla käsitellään kolmiulotteista tietokonegrafiikka erityisen maisemagraafimallin avulla. Maisemagraafi on binääripuuta muistuttava malli, joka mahdollistaa kolmiulotteisten kohteiden ja niille tapahtuvien muunnoksien käsittelyn hierarkisessa järjestyksessä. Työssä käydään läpi Java 3D -maisemagraafien luominen ja kolmiulotteisessa avaruudessa sijaitseville kappaleille tehtäviä perusoperaatioita kuten siirtoa ja kiertoa. Lisäksi käydään läpi myös erilaisia animoinnissa ja interaktiossa käytettäviä luokkia, joiden avulla ohjelmoija saa automatisoitua muunnoksia sekä käyttäjä voi antaa syötteitä hiirellä ja näppäimistöllä. Näiden lisäksi käydään läpi myös mallin valaistusta, varjoja, teksturointia sekä omien kolmiulotteisten mallien tuontia Java 3D -maailmaan. Opinnäytetyön yhteydessä on tehty myös kirjo erilaisia esimerkkejä, jotka ovat saatavilla verkkosivustolta osoitteessa http://www.pahvilaatikko.org/j3d lisäksi kopio verkkosivustosta löytyy myös opinnäytetyön mukana tulevalta cd-levyltä.
Resumo:
Simultaneous localization and mapping(SLAM) is a very important problem in mobile robotics. Many solutions have been proposed by different scientists during the last two decades, nevertheless few studies have considered the use of multiple sensors simultane¬ously. The solution is on combining several data sources with the aid of an Extended Kalman Filter (EKF). Two approaches are proposed. The first one is to use the ordinary EKF SLAM algorithm for each data source separately in parallel and then at the end of each step, fuse the results into one solution. Another proposed approach is the use of multiple data sources simultaneously in a single filter. The comparison of the computational com¬plexity of the two methods is also presented. The first method is almost four times faster than the second one.
Resumo:
In the thesis the principle of work of eddy current position sensors and the main cautions that must be taken into account while sensor design process are explained. A way of automated eddy current position sensor electrical characteristics measurement is suggested. A prototype of the eddy current position sensor and its electrical characteristics are investigated. The results obtained by means of the automated measuring system are explained.
Resumo:
The goal of this thesis is to implement software for creating 3D models from point clouds. Point clouds are acquired with stereo cameras, monocular systems or laser scanners. The created 3D models are triangular models or NURBS (Non-Uniform Rational B-Splines) models. Triangular models are constructed from selected areas from the point clouds and resulted triangular models are translated into a set of quads. The quads are further translated into an estimated grid structure and used for NURBS surface approximation. Finally, we have a set of NURBS surfaces which represent the whole model. The problem wasn’t so easy to solve. The selected triangular surface reconstruction algorithm did not deal well with noise in point clouds. To handle this problem, a clustering method is introduced for simplificating the model and removing noise. As we had better results with the smaller point clouds produced by clustering, we used points in clusters to better estimate the grids for NURBS models. The overall results were good when the point cloud did not have much noise. The point clouds with small amount of error had good results as the triangular model was solid. NURBS surface reconstruction performed well on solid models.
Resumo:
In this work, we derive the full 3D kinematics of the near-infrared outflow HH 223, located in the dark cloud Lynds 723 (L723), where a well-defined quadrupolar CO outflow is found. HH 223 appears projected on to the two lobes of the eastwest CO outflow. The radio continuum source VLA 2, towards the centre of the CO outflow, harbours a multiple system of low-mass young stellar objects. One of the components has been proposed to be the exciting source of the eastwest CO outflow. From the analysis of the kinematics, we get further evidence on the relationship between the near-infrared and CO outflows and on the location of their exciting source. The proper motions were derived using multi-epoch, narrow-band H2 (2.122 μm line) images. Radial velocities were derived from the 2.122 μm line of the spectra. Because of the extended (∼5 arcmin), S-shaped morphology of the target, the spectra were obtained with the multi-object-spectroscopy (MOS) observing mode using the instrument Long-Slit Intermediate Resolution Infrared Spectrograph (LIRIS) at the 4.2 m William Herschel Telescope. To our knowledge, this work is the first time that MOS observing mode has been successfully used in the near-infrared range for an extended target.