975 resultados para 3D imaging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Although there are many structural neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) in children, there are inconsistencies across studies and no consensus regarding which brain regions show the most robust area or volumetric reductions relative to control subjects. Our goal was to statistically analyze structural imaging data via a meta-analysis to help resolve these issues. Methods We searched the MEDLINE and PsycINFO databases through January 2005. Studies must have been written in English, used magnetic resonance imaging, and presented the means and standard deviations of regions assessed. Data were extracted by one of the authors and verified independently by another author. Results Analyses were performed using STATA with metan, metabias, and metainf programs. A meta-analysis including all regions across all studies indicated global reductions for ADHD subjects compared with control subjects, standardized mean difference equal to .408, p less than .001. Regions most frequently assessed and showing the largest differences included cerebellar regions, the splenium of the corpus callosum, total and right cerebral volume, and right caudate. Several frontal regions assessed in only two studies also showed large significant differences. Conclusions This meta-analysis provides a quantitative analysis of neuroanatomical abnormalities in ADHD and information that can be used to guide future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Clinically, the Cobb angle method measures the overall scoliotic curve in the coronal plane but does not measure individual vertebra and disc wedging. The contributions of the vertebrae and discs in the growing scoliotic spine were measured to investigate coronal plane deformity progression with growth. Methods A 0.49mm isotropic 3D MRI technique was developed to investigate the level-by-level changes that occur in the growing spine of a group of Adolescent Idiopathic Scoliosis (AIS) patients, who received two to four sequential scans (spaced 3-12 months apart). The coronal plane wedge angles of each vertebra and disc in the major curve were measured to capture any changes that occurred during their adolescent growth phase. Results Seventeen patients had at least two scans. Mean patient age was 12.9 years (SD 1.5 years). Sixteen were classified as right-sided major thoracic Lenke Type 1 (one left sided). Mean standing Cobb angle at initial presentation was 31° (SD 12°). Six received two scans, nine three scans and two four scans, with 65% showing a Cobb angle progression of 5° or more between scans. Overall, there was no clear pattern of deformity progression of individual vertebrae and discs, nor between patients who progressed and those who didn’t. There were measurable changes in the wedging of the vertebrae and discs in all patients. In sequential scans, change in direction of wedging was also seen. In several patients there was reverse wedging in the discs that counteracted increased wedging of the vertebrae such that no change in overall Cobb angle was seen. Conclusion Sequential MRI data showed complex patterns of deformity progression. Changes to the wedging of individual vertebrae and discs may occur in patients who have no increase in Cobb angle measure; the Cobb method alone may be insufficient to capture the complex mechanisms of deformity progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION There is a large range in the reported prevalence of end plate lesions (EPLs), sometimes referred to as Schmorl's nodes in the general population (3.8-76%). One possible reason for this large range is the differences in definitions used by authors. Previous research has suggested that EPLs may potentially be a primary disturbance of growth plates that leads to the onset of scoliosis. The aim of this study was to develop a technique to measure the size, prevalence and location of EPLs on Computed Tomography (CT) images of scoliosis patients in a consistent manner. METHODS A detection algorithm was developed and applied to measure EPLs for five adolescent females with idiopathic scoliosis (average age 15.1 years, average major Cobb 60°). In this algorithm, the EPL definition was based on the lesion depth, the distance from the edge of the vertebral body and the gradient of the lesion edge. Existing low-dose, CT scans of the patients' spines were segmented semi-automatically to extract 3D vertebral endplate morphology. Manual sectioning of any attachments between posterior elements of adjacent vertebrae and, if necessary, endplates was carried out before the automatic algorithm was used to determine the presence and position of EPLs. RESULTS EPLs were identified in 15 of the 170 (8.8%) endplates analysed with an average depth of 3.1mm. 73% of the EPLs were seen in the lumbar spines (11/15). A sensitivity study demonstrated that the algorithm was most sensitive to changes in the minimum gradient required at the lesion edge. CONCLUSION An imaging analysis technique for consistent measurement of the prevalence, location and size of EPLs on CT images has been developed. Although the technique was tested on scoliosis patients, it can be used to analyse other populations without observer errors in EPL definitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION. Clinically, the Cobb angle method measures the overall scoliotic curve in the coronal plane but does not measure individual vertebra and disc wedging. The contributions of the vertebrae and discs in the growing scoliotic spine were measured to investigate coronal plane deformity progression with growth. METHODS. A 0.49mm isotropic 3D MRI technique was developed to investigate the level-by-level changes that occur in the growing spine of a group of Adolescent Idiopathic Scoliosis (AIS) patients, who received two to four sequential scans (spaced 3-12 months apart). The coronal plane wedge angles of each vertebra and disc in the major curve were measured to capture any changes that occurred during their adolescent growth phase. RESULTS. Seventeen patients had at least two scans. Mean patient age was 12.9 years (SD 1.5 years). Sixteen were classified as right-sided major thoracic Lenke Type 1 (one left sided). Mean standing Cobb angle at initial presentation was 31° (SD 12°). Six received two scans, nine three scans and two four scans, with 65% showing a Cobb angle progression of 5° or more between scans. Overall, there was no clear pattern of deformity progression of individual vertebrae and discs, nor between patients who progressed and those who didn’t. There were measurable changes in the wedging of the vertebrae and discs in all patients. In sequential scans, change in direction of wedging was also seen. In several patients there was reverse wedging in the discs that counteracted increased wedging of the vertebrae such that no change in overall Cobb angle was seen. CONCLUSION. Sequential MRI data showed complex patterns of deformity progression. Changes to the wedging of individual vertebrae and discs may occur in patients who have no increase in Cobb angle measure; the Cobb method alone may be insufficient to capture the complex mechanisms of deformity progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION. The intervertebral disc is the largest avascular structure in the human body, withstanding transient loads of up to nine times body weight during rigorous physical activity. The key structural elements of the disc are a gel-like nucleus pulposus surrounded by concentric lamellar rings containing criss-crossed collagen fibres. The disc also contains an elastic fiber network which has been suggested to play a structural role, but to date the relationship between the collagen and elastic fiber networks is unclear. CONCLUSION. The multimodal transmitted and reflected polarized light microscopy technique developed here allows clear differentiation between the collagen and elastic fiber networks of the intervertebral disc. The ability to image unstained specimens avoids concerns with uneven stain penetration or specificity of staining. In bovine tail discs, the elastic fiber network is intimately associated with the collagen network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Standing radiographs are the ‘gold standard’ for clinical assessment of adolescent idiopathic scoliosis (AIS), with the Cobb Angle used to measure the severity and progression of the scoliotic curve. Supine imaging modalities can provide valuable 3D information on scoliotic anatomy, however, due to changes in gravitational loading direction, the geometry of the spine alters between the supine and standing position which in turn affects the Cobb Angle measurement. Previous studies have consistently reported a 7-10° [1-3] Cobb Angle increase from supine to standing, however, none have reported the effect of endplate pre-selection and which (if any) curve parameters affect the supine to standing Cobb Angle difference. CONCLUSION There is a statistically significant relationship between supine to standing Cobb Angle change and fulcrum flexibility. Therefore, this difference can be considered a measure of spinal flexibility. Pre-selecting vertebral endplates causes only minor changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Cadaveric studies have previously documented typical patterns of venous drainage within vertebral bodies (VBs) [1,2,3], comprised primarily of the basivertebral vein, a planar tree like structure at the mid-height of the VB. These studies, however, are limited in the number of samples available, and so have not examined any potential differences in this anatomy in conditions such as scoliosis. MRI is able to create 3D images of soft tissue structures in the spine, including the basivertebral vein without the use of contrast. As a non-invasive imaging technique this opens up the possibility of examining the venous network in multiple VBs within the same subject, in healthy controls as well as in subjects with abnormal anatomy such as adolescent idiopathic scoliosis (AIS). CONCLUSIONS High resolution MRI scans allow in vivo quantification of the vertebral venous system at multiple levels on healthy and scoliotic populations for the first time. The length of the basivertebral vein was seen to have a significant bias to the right hand side of the VB in both healthy and AIS adolescents. The spatial pattern of this vein showed large variations in branching both within and across individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate the presence of spinal inflammation with and without sacroiliac (SI) joint inflammation on magnetic resonance imaging (MRI) in patients with active nonradiographic axial spondyloarthritis (SpA), and to compare the disease characteristics of these subgroups. Methods: ABILITY-1 is a multicenter, randomized, controlled trial of adalimumab versus placebo in patients with nonradiographic axial SpA classified using the Assessment of SpondyloArthritis international Society axial SpA criteria. Baseline MRIs were centrally scored independently by 2 readers using the Spondyloarthritis Research Consortium of Canada (SPARCC) method for the SI joints and the SPARCC 6-discovertebral unit method for the spine. Positive evidence of inflammation on MRI was defined as a SPARCC score of >2 for either the SI joints or the spine. Results: Among patients with baseline SPARCC scores, 40% had an SI joint score of >2 and 52% had a spine score of >2. Forty-nine percent of patients with baseline SI joint scores of <2, and 58% of those with baseline SI joint scores of >2, had a spine score of >2. Comparison of baseline disease characteristics by baseline SI joint and spine scores showed that a greater proportion of patients in the subgroup with a baseline SPARCC score of >2 for both SI joints and spine were male, and patients with spine and SI joint scores of <2 were younger and had shorter symptom duration. SPARCC spine scores correlated with baseline symptom duration, and SI joint scores correlated negatively with the baseline Bath Ankylosing Spondylitis Disease Activity Index, but neither correlated with the baseline Ankylosing Spondylitis Disease Activity Score, total back pain, the patient's global assessment of disease activity, the Bath Ankylosing Spondylitis Functional Index, morning stiffness, nocturnal pain, or C-reactive protein level. Conclusion: Assessment by experienced readers showed that spinal inflammation on MRI might be observed in half of patients with nonradiographic axial SpA without SI joint inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstructing 3D motion data is highly under-constrained due to several common sources of data loss during measurement, such as projection, occlusion, or miscorrespondence. We present a statistical model of 3D motion data, based on the Kronecker structure of the spatiotemporal covariance of natural motion, as a prior on 3D motion. This prior is expressed as a matrix normal distribution, composed of separable and compact row and column covariances. We relate the marginals of the distribution to the shape, trajectory, and shape-trajectory models of prior art. When the marginal shape distribution is not available from training data, we show how placing a hierarchical prior over shapes results in a convex MAP solution in terms of the trace-norm. The matrix normal distribution, fit to a single sequence, outperforms state-of-the-art methods at reconstructing 3D motion data in the presence of significant data loss, while providing covariance estimates of the imputed points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing need for new biodiagnostics that combine high throughput with enhanced spatial resolution and sensitivity. Gold nanoparticle (NP) assemblies with sub-10 nm particle spacing have the benefits of improving detection sensitivity via Surface enhanced Raman scattering (SERS) and being of potential use in biomedicine due to their colloidal stability. A promising and versatile approach to form solution-stable NP assemblies involves the use of multi-branched molecular linkers which allows tailoring of the assembly size, hot-spot density and interparticle distance. We have shown that linkers with multiple anchoring end-groups can be successfully employed as a linker to assemble gold NPs into dimers, linear NP chains and clustered NP assemblies. These NP assemblies with diameters of 30-120 nm are stable in solution and perform better as SERS substrates compared with single gold NPs, due to an increased hot-spot density. Thus, tailored gold NP assemblies are potential candidates for use as biomedical imaging agents. We observed that the hot-spot density and in-turn the SERS enhancement is a function of the linker polymer concentration and polymer architecture. New deep Raman techniques like Spatially Offset Raman Spectroscopy (SORS) have emerged that allow detection from beneath diffusely scattering opaque materials, including biological media such as animal tissue. We have been able to demonstrate that the gold NP assemblies could be detected from within both proteinaceous and high lipid containing animal tissue by employing a SORS technique with a backscattered geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in optical and fluorescent protein technology have rapidly raised expectations in cell biology, allowing quantitative insights into dynamic intracellular processes like never before. However, quantitative live-cell imaging comes with many challenges including how best to translate dynamic microscopy data into numerical outputs that can be used to make meaningful comparisons rather than relying on representative data sets. Here, we use analysis of focal adhesion turnover dynamics as a straightforward specific example on how to image, measure, and analyze intracellular protein dynamics, but we believe this outlines a thought process and can provide guidance on how to understand dynamic microcopy data of other intracellular structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we describe a protocol for advanced CUBIC (Clear, Unobstructed Brain/Body Imaging Cocktails and Computational analysis). The CUBIC protocol enables simple and efficient organ clearing, rapid imaging by light-sheet microscopy and quantitative imaging analysis of multiple samples. The organ or body is cleared by immersion for 1–14 d, with the exact time required dependent on the sample type and the experimental purposes. A single imaging set can be completed in 30–60 min. Image processing and analysis can take <1 d, but it is dependent on the number of samples in the data set. The CUBIC clearing protocol can process multiple samples simultaneously. We previously used CUBIC to image whole-brain neural activities at single-cell resolution using Arc-dVenus transgenic (Tg) mice. CUBIC informatics calculated the Venus signal subtraction, comparing different brains at a whole-organ scale. These protocols provide a platform for organism-level systems biology by comprehensively detecting cells in a whole organ or body.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Over the past decade, molecular imaging has played a key role in the progression of drug delivery platforms from concept to commercialisation. Of the molecular imaging techniques commonly utilised, positron emission tomography (PET) can yield a breadth of information not easily accessible by other methodologies and when combined with other complementary imaging modalities, is a powerful tool for pre- and clinical development of therapeutics. However, very little research has focussed on the information available from complimentary imaging modalities. This paper reports on the data-rich methodologies of contrast enhanced PET/CT and PET/MRI for probing efficacy of polymer drug delivery platforms. Results The information available from an ExiTron nano 6000 contrast enhanced PET/CT and a gadolinium (Gd) enhanced PET/MRI image of a 64Cu labeled HBP in the same mouse was qualitatively compared. Conclusions Gd contrast enhanced PET/MRI offers a powerful methodology for investigating the distribution of polymer drug delivery platforms in vivo and throughout a tumour volume. Furthermore, information about depth of penetration away from primary blood vessels can be gleaned, potentially leading to development of more efficacious delivery vehicles for clinical use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular imaging is utilised in modern medicine to aid in the diagnosis and treatment of disease by allowing its spatiotemporal state to be examined in vivo. This study focuses on the development of novel multimodal molecular imaging agents based on hyperbranched polymers that combine the complementary capabilities of optical fluorescence imaging and positron emission tomography-computed tomography (PET/CT) into one construct. RAFT-mediated polymerisation was used to prepare two hydrophilic hyperbranched polymers that were differentiated by their size and level of branching. The multiple functional end-groups facilitated covalent attachment of both near infrared fluorescent dyes for optical imaging, as well as a copper chelator allowing binding of 64Cu as a PET radio nuclei. In vivo multimodal imaging of mice using PET/CT and planar optical imaging was first used to assess the biodistribution of the polymeric materials and it was shown that the larger and more branched polymer had a significantly longer circulation time. The larger constructs were also shown to exhibit enhanced accumulation in solid tumours in a murine B16 melanoma model. Importantly, it was demonstrated that the PET modality gave rise to high sensitivity immediately after injection of the agent, while the optical modality facilitated extended longitudinal studies, thus highlighting how the complementary capabilities of the molecular imaging agents can be useful for studying various diseases, including cancer.