992 resultados para 3D culture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study peptide growth factor action in a three-dimensional cellular environment, aggregating cell cultures prepared from 15-day fetal rat telencephalon were grown in a chemically defined medium and treated during an early developmental stage with either bovine fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF homodimers AA and BB). A single dose (5-50 ng/ml) of either growth factor given to the cultures on day 3 greatly enhanced the developmental increase of the two glia-specific enzyme activities, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) and glutamine synthetase (GS), whereas it had relatively little effect on total protein and DNA content. Distinct patterns of dose-dependency were found for CNP and GS stimulation. At low concentrations of bFGF (0.5-5 ng/ml) and at all PDGF concentrations applied, the oligodendroglial marker enzyme CNP was the most affected. A relatively small but significant mitogenic effect was observed after treatment with PDGF, particularly at higher concentrations or after repetitive stimulation. The two PDGF homodimers AA and BB were similar in their biological effects and potency. The present results show that under histotypic conditions both growth factors, bFGF and PDGF, promote the maturation rather than the proliferation of immature oligodendrocytes and astrocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate the potential of free-breathing 3D steady-state free precession (SSFP) imaging with radial k-space sampling for coronary MR-angiography (MRA), coronary projection MR-angiography and coronary vessel wall imaging. MATERIALS AND METHODS: A navigator-gated free-breathing T2-prepared 3D SSFP sequence (TR = 6.1 ms, TE = 3.0 ms, flip angle = 120 degrees, field-of-view = 360 mm(2)) with radial k-space sampling (384 radials) was implemented for coronary MRA. For projection coronary MRA, this sequence was combined with a 2D selective aortic spin tagging pulse. Coronary vessel wall imaging was performed using a high-resolution inversion-recovery black-blood 3D radial SSFP sequence (384 radials, TR = 5.3 ms, TE = 2.7 ms, flip angle = 55 degrees, reconstructed resolution 0.35 x 0.35 x 1.2 mm(3)) and a local re-inversion pulse. Six healthy volunteers (two for each sequence) were investigated. Motion artifact level was assessed by two radiologists. Results: In coronary MRA, the coronary lumen was displayed with a high signal and high contrast to the surrounding lumen. Projection coronary MRA demonstrated selective visualization of the coronary lumen while surrounding tissue was almost completely suppressed. In coronary vessel wall imaging, the vessel wall was displayed with a high signal when compared to the blood pool and the surrounding tissue. No visible motion artifacts were seen. Conclusion: 3D radial SSFP imaging enables coronary MRA, coronary projection MRA and coronary vessel wall imaging with a low motion artifact level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the various work stress models, one of the most popular has been the job demands-control (JDC) model developed by Karasek (1979), which postulates that work-related strain is highest under work conditions characterized by high demands and low autonomy. The absence of social support at work further increases negative outcomes. This model, however, does not apply equally to all individuals and to all cultures. This review demonstrates how various individual characteristics, especially some personality dimensions, influence the JDC model and could thus be considered buffering or moderator factors. Moreover, we review how the cultural context impacts this model as suggested by results obtained in European, American, and Asian contexts. Yet there are almost no data from Africa or South America. More crosscultural studies including populations from these continents would be valuable for a better understanding of the impact of the cultural context on the JDC model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of three-dimensional (3D) knee joint angle outside a laboratory is of benefit in clinical examination and therapeutic treatment comparison. Although several motion capture devices exist, there is a need for an ambulatory system that could be used in routine practice. Up-to-date, inertial measurement units (IMUs) have proven to be suitable for unconstrained measurement of knee joint differential orientation. Nevertheless, this differential orientation should be converted into three reliable and clinically interpretable angles. Thus, the aim of this study was to propose a new calibration procedure adapted for the joint coordinate system (JCS), which required only IMUs data. The repeatability of the calibration procedure, as well as the errors in the measurement of 3D knee angle during gait in comparison to a reference system were assessed on eight healthy subjects. The new procedure relying on active and passive movements reported a high repeatability of the mean values (offset<1 degrees) and angular patterns (SD<0.3 degrees and CMC>0.9). In comparison to the reference system, this functional procedure showed high precision (SD<2 degrees and CC>0.75) and moderate accuracy (between 4.0 degrees and 8.1 degrees) for the three knee angle. The combination of the inertial-based system with the functional calibration procedure proposed here resulted in a promising tool for the measurement of 3D knee joint angle. Moreover, this method could be adapted to measure other complex joint, such as ankle or elbow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient high-resolution (HR) three-dimensional (3D) seismic reflection system for small-scale targets in lacustrine settings was developed. In Lake Geneva, near the city of Lausanne, Switzerland, the offshore extension of a complex fault zone well mapped on land was chosen for testing our system. A preliminary two-dimensional seismic survey indicated structures that include a thin (<40 m) layer of subhorizontal Quaternary sediments that unconformably overlie south-east-dipping Tertiary Molasse beds and a major fault zone (Paudeze Fault Zone) that separates Plateau and Subalpine Molasse (SM) units. A 3D survey was conducted over this test site using a newly developed three-streamer system. It provided high-quality data with a penetration to depths of 300 m below the water bottom of non-aliased signal for dips up to 30degrees and with a maximum vertical resolution of 1.1 m. The data were subjected to a conventional 3D processing sequence that included post-stack time migration. Tests with 3D pre-stack depth migration showed that such techniques can be applied to HR seismic surveys. Delineation of several horizons and fault surfaces reveals the potential for small-scale geologic and tectonic interpretation in three dimensions. Five major seismic facies and their detailed 3D geometries can be distinguished. Three fault surfaces and the top of a molasse surface were mapped in 3D. Analysis of the geometry of these surfaces and their relative orientation suggests that pre-existing structures within the Plateau Molasse (PM) unit influenced later faulting between the Plateau and SM. In particular, a change in strike of the PM bed dip may indicate a fold formed by a regional stress regime, the orientation of which was different from the one responsible for the creation of the Paudeze Fault Zone. This structure might have later influenced the local stress regime and caused the curved shape of the Paudeze Fault in our surveyed area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anàlisi de les diferents funcionalitats de l'aplicació Geomedia 3D i la seva utilitat dins del terreny dels sistemes d'informació geogràfica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Like numerous torrents in mountainous regions, the Illgraben creek (canton of Wallis, SW Switzerland) produces almost every year several debris flows. The total area of the active catchment is only 4.7 km², but large events ranging from 50'000 to 400'000 m³ are common (Zimmermann 2000). Consequently, the pathway of the main channel often changes suddenly. One single event can for instance fill the whole river bed and dig new several-meters-deep channels somewhere else (Bardou et al. 2003). The quantification of both, the rhythm and the magnitude of these changes, is very important to assess the variability of the bed's cross section and long profile. These parameters are indispensable for numerical modelling, as they should be considered as initial conditions. To monitor the channel evolution an Optech ILRIS 3D terrestrial laser scanner (LIDAR) was used. LIDAR permits to make a complete high precision 3D model of the channel and its surroundings by scanning it from different view points. The 3D data are treated and interpreted with the software Polyworks from Innovmetric Software Inc. Sequential 3D models allow for the determination of the variation in the bed's cross section and long profile. These data will afterwards be used to quantify the erosion and the deposition in the torrent reaches. To complete the chronological evolution of the landforms, precise digital terrain models, obtained by high resolution photogrammetry based on old aerial photographs, will be used. A 500 m long section of the Illgraben channel was scanned on 18th of August 2005 and on 7th of April 2006. These two data sets permit identifying the changes of the channel that occurred during the winter season. An upcoming scanning campaign in September 2006 will allow for the determination of the changes during this summer. Preliminary results show huge variations in the pathway of the Illgraben channel, as well as important vertical and lateral erosion of the river bed. Here we present the results of a river bank on the left (north-western) flank of the channel (Figure 1). For the August 2005 model the scans from 3 viewpoints were superposed, whereas the April 2006 3D image was obtained by combining 5 separate scans. The bank was eroded. The bank got eroded essentially on its left part (up to 6.3 m), where it is hit by the river and the debris flows (Figures 2 and 3). A debris cone has also formed (Figure 3), which suggests that a part of the bank erosion is due to shallow landslides. They probably occur when the river erosion creates an undercut slope. These geometrical data allow for the monitoring of the alluvial dynamics (i.e. aggradation and degradation) on different time scales and the influence of debris flows occurrence on these changes. Finally, the resistance against erosion of the bed's cross section and long profile will be analysed to assess the variability of these two key parameters. This information may then be used in debris flow simulation.