914 resultados para 3D Model
Resumo:
This work presents the design of a real-time system to model visual objects with the use of self-organising networks. The architecture of the system addresses multiple computer vision tasks such as image segmentation, optimal parameter estimation and object representation. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and faces, and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product. The proposed method is easily extensible to 3D objects, as it offers similar features for efficient mesh reconstruction.
Resumo:
Adjoint methods have proven to be an efficient way of calculating the gradient of an objective function with respect to a shape parameter for optimisation, with a computational cost nearly independent of the number of the design variables [1]. The approach in this paper links the adjoint surface sensitivities (gradient of objective function with respect to the surface movement) with the parametric design velocities (movement of the surface due to a CAD parameter perturbation) in order to compute the gradient of the objective function with respect to CAD variables.
For a successful implementation of shape optimization strategies in practical industrial cases, the choice of design variables or parameterisation scheme used for the model to be optimized plays a vital role. Where the goal is to base the optimization on a CAD model the choices are to use a NURBS geometry generated from CAD modelling software, where the position of the NURBS control points are the optimisation variables [2] or to use the feature based CAD model with all of the construction history to preserve the design intent [3]. The main advantage of using the feature based model is that the optimized model produced can be directly used for the downstream applications including manufacturing and process planning.
This paper presents an approach for optimization based on the feature based CAD model, which uses CAD parameters defining the features in the model geometry as the design variables. In order to capture the CAD surface movement with respect to the change in design variable, the “Parametric Design Velocity” is calculated, which is defined as the movement of the CAD model boundary in the normal direction due to a change in the parameter value.
The approach presented here for calculating the design velocities represents an advancement in terms of capability and robustness of that described by Robinson et al. [3]. The process can be easily integrated to most industrial optimisation workflows and is immune to the topology and labelling issues highlighted by other CAD based optimisation processes. It considers every continuous (“real value”) parameter type as an optimisation variable, and it can be adapted to work with any CAD modelling software, as long as it has an API which provides access to the values of the parameters which control the model shape and allows the model geometry to be exported. To calculate the movement of the boundary the methodology employs finite differences on the shape of the 3D CAD models before and after the parameter perturbation. The implementation procedure includes calculating the geometrical movement along a normal direction between two discrete representations of the original and perturbed geometry respectively. Parametric design velocities can then be directly linked with adjoint surface sensitivities to extract the gradients to use in a gradient-based optimization algorithm.
The optimisation of a flow optimisation problem is presented, in which the power dissipation of the flow in an automotive air duct is to be reduced by changing the parameters of the CAD geometry created in CATIA V5. The flow sensitivities are computed with the continuous adjoint method for a laminar and turbulent flow [4] and are combined with the parametric design velocities to compute the cost function gradients. A line-search algorithm is then used to update the design variables and proceed further with optimisation process.
Resumo:
The use of the Design by Analysis (DBA) route is a modern trend in pressure vessel and piping international codes in mechanical engineering. However, to apply the DBA to structures under variable mechanical and thermal loads, it is necessary to assure that the plastic collapse modes, alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case), be precluded. The tool available to achieve this target is the shakedown theory. Unfortunately, the practical numerical applications of the shakedown theory result in very large nonlinear optimization problems with nonlinear constraints. Precise, robust and efficient algorithms and finite elements to solve this problem in finite dimension has been a more recent achievements. However, to solve real problems in an industrial level, it is necessary also to consider more realistic material properties as well as to accomplish 3D analysis. Limited kinematic hardening, is a typical property of the usual steels and it should be considered in realistic applications. In this paper, a new finite element with internal thermodynamical variables to model kinematic hardening materials is developed and tested. This element is a mixed ten nodes tetrahedron and through an appropriate change of variables is possible to embed it in a shakedown analysis software developed by Zouain and co-workers for elastic ideally-plastic materials, and then use it to perform 3D shakedown analysis in cases with limited kinematic hardening materials
Resumo:
This paper addresses the estimation of object boundaries from a set of 3D points. An extension of the constrained clustering algorithm developed by Abrantes and Marques in the context of edge linking is presented. The object surface is approximated using rectangular meshes and simplex nets. Centroid-based forces are used for attracting the model nodes towards the data, using competitive learning methods. It is shown that competitive learning improves the model performance in the presence of concavities and allows to discriminate close surfaces. The proposed model is evaluated using synthetic data and medical images (MRI and ultrasound images).
Resumo:
This research focuses on finding a fashion design methodology to reliably translate innovative two-dimensional ideas on paper, via a structural design sculpture, into an intermediate model. The author, both as a fashion designer and a researcher, has witnessed the issues which arise, regarding the loss of some of the initial ideas and distortion during the two-dimensional creative sketch to three-dimensional garment transfer process. Therefore, this research is concerned with fashion designers engaged in transferring a two-dimensional sketch through the method ‘sculptural form giving’. This research method applies the ideal model of conceptual sculpture, in the fashion design process, akin to those used in the disciplines of architecture. These parallel design disciplines share similar processes for realizing design ideas. Moreover, this research investigates and formalizes the processes that utilize the measurable space between the garment and the body, to help transfer garment variation and scale. In summation, this research proposition focuses on helping fashion designers to produce a creative method that helps the designer transfer their imaginative concept through intermediate modeling.
Resumo:
The thesis uses a three-dimensional, first-principles model of the ionosphere in combination with High Frequency (HF) raytracing model to address key topics related to the physics of HF propagation and artificial ionospheric heating. In particular: 1. Explores the effect of the ubiquitous electron density gradients caused by Medium Scale Traveling Ionospheric Disturbances (MSTIDs) on high-angle of incidence HF radio wave propagation. Previous studies neglected the all-important presence of horizontal gradients in both the cross- and down-range directions, which refract the HF waves, significantly changing their path through the ionosphere. The physics-based ionosphere model SAMI3/ESF is used to generate a self-consistently evolving MSTID that allows for the examination of the spatio-temporal progression of the HF radio waves in the ionosphere. 2. Tests the potential and determines engineering requirements for ground- based high power HF heaters to trigger and control the evolution of Equatorial Spread F (ESF). Interference from ESF on radio wave propagation through the ionosphere remains a critical issue on HF systems reliability. Artificial HF heating has been shown to create plasma density cavities in the ionosphere similar to those that may trigger ESF bubbles. The work explores whether HF heating may trigger or control ESF bubbles. 3. Uses the combined ionosphere and HF raytracing models to create the first self-consistent HF Heating model. This model is utilized to simulate results from an Arecibo experiment and to provide understanding of the physical mechanism behind observed phenomena. The insights gained provide engineering guidance for new artificial heaters that are being built for use in low to middle latitude regions. In accomplishing the above topics: (i) I generated a model MSTID using the SAMI3/ESF code, and used a raytrace model to examine the effects of the MSTID gradients on radio wave propagation observables; (ii) I implemented a three- dimensional HF heating model in SAMI3/ESF and used the model to determine whether HF heating could artificially generate an ESF bubble; (iii) I created the first self-consistent model for artificial HF heating using the SAMI3/ESF ionosphere model and the MoJo raytrace model and ran a series of simulations that successfully modeled the results of early artificial heating experiments at Arecibo.
Resumo:
The protein Ezrin, is a member of the ERM family (Ezrin, Radixin and Moesin) that links the F-actin to the plasma membrane. The protein is made of three domains namely the FERM domain, a central α-helical domain and the CERMAD domain. The residues in Ezrin such as Ser66, Tyr145, Tyr353 and Tyr477 regulate the function of the protein through phosphorylation. The protein is found in two distinct conformations of active and dormant (inactive) state. The initial step during the conformation change is the breakage of intramolecular interaction in dormant Ezrin by phosphorylation of residue Thr567. The dormant structure of human Ezrin was predicted computationally since only partial active form structure was available. The validation analysis showed that 99.7% residues were positioned in favored, allowed and generously allowed regions of the Ramachandran plot. The Z-score of Ezrin was −7.36, G-factor was 0.1, and the QMEAN score of the model was 0.61 indicating a good model for human Ezrin. The comparison of the conformations of the activated and dormant Ezrin showed a major shift in the F2 lobe (residues 142-149 and 161-177) while changes in the conformation induced mobility shifts in lobe F3 (residues 261 to 267). The 3D positions of the phosphorylation sites Tyr145, Tyr353, Tyr477, Tyr482 and Thr567 were also located. Using targeted molecular dynamic simulation, the molecular movements during conformational change from active to dormant were visualized. The dormant Ezrin auto-inhibits itself by a head-to-tail interaction of the N-terminal and C-terminal residues. The trajectory shows the breakage of the interactions and mobility of the CERMAD domain away from the FERM domain. Protein docking and clustering analysis were used to predict the residues involved in the interaction between dormant Ezrin and mTOR. Residues Tyr477 and Tyr482 were found to be involved in interaction with mTOR.
Resumo:
International audience
Resumo:
International audience
Resumo:
Aim: To investigate the effect of implant-abutment angulation and crown material on stress distribution of central incisors. Finite element method was used to simulate the clinical situation of a maxillary right central incisor restored by two different implant-abutment angulations, 15° and 25°, using two different crown materials (IPS E-Max CAD and zirconia). Methods: Two 3D finite element models were specially prepared for this research simulating the abutment angulations. Commercial engineering CAD/CAM package was used to model crown, implant abutment complex and bone (cortical and spongy) in 3D. Linear static analysis was performed by applying a 178 N oblique load. The obtained results were compared with former experimental results. Results: Implant Von Mises stress level was negligibly changed with increasing abutment angulation. The abutment with higher angulation is mechanically weaker and expected to fail at lower loading in comparison with the steeper one. Similarly, screw used with abutment angulation of 25° will fail at lower (about one-third) load value the failure load of similar screw used with abutment angulated by 15°. Conclusions: Bone (cortical and spongy) is insensitive to crown material. Increasing abutment angulation from 15° to 25°, increases stress on cortical bone by about 20% and reduces it by about 12% on spongy bone. Crown fracture resistance is dramatically reduced by increasing abutment angulation. Zirconia crown showed better performance than E-Max one.
Resumo:
Tradicionalmente, los ortodoncistas han realizado las mediciones dentales en los modelos de yeso, pero los avances tecnológicos permiten ahora a los ortodoncistas realizar esas mediciones en los modelos digitales. El propósito de este estudio fue comparar la fiabilidad y reproducibilidad de las medidas de los tamaños dentarios y las arcadas dentarias entre el método manual y los métodos digitales 3D obtenidos por un escáner intraoral CEREC Omnicam (Sirona Dental Systems) y dos escáneres extraorales: inEos X5 (Sirona Dental Systems) y Dental Scanner SMART (Open Technologies). Un modelo de yeso, un escaneado intraoral y dos modelos digitales con un escáner extraoral fueron realizadas para cada uno de los 20 sujetos. Las medidas de los tamaños dentarios, la distancia intercanina y la distancia intermolar de los modelos digitales se compararon con los correspondientes modelos de yeso (estándar de oro) Se utilizó el test de ANOVA para establecer la fiabilidad entre los cuatro métodos y el coeficiente de correlación intraclase fue calculado para determinar la reproducibilidad intra- e inter-examinador. Los resultados encontrados fueron que no existieron diferencias estadísticamente significativas entre las medidas hechas directamente en los modelos de yeso y los modelos digitales. Los coeficientes de correlación intraclase tanto intra- e inter-examinador fue alto y considerado bueno para los cuatro métodos de medición. CCI> 0.90. Se concluyó que las mediciones en los modelos digitales obtenidos con un escáner extraoral e intraoral son fiables y reproducibles
Resumo:
The purpose of this project is to develop a three-dimensional block model for a garnet deposit in the Alder Gulch, Madison County, Montana. Garnets occur in pre-Cambrian metamorphic Red Wash gneiss and similar rocks in the vicinity. This project seeks to model the percentage of garnet in a deposit called the Section 25 deposit using the Surpac software. Data available for this work are drillhole, trench and grab sample data obtained from previous exploration of the deposit. The creation of the block model involves validating the data, creating composites of assayed garnet percentages and conducting basic statistics on composites using Surpac statistical tools. Variogram analysis will be conducted on composites to quantify the continuity of the garnet mineralization. A three-dimensional block model will be created and filled with estimates of garnet percentage using different methods of reserve estimation and the results compared.
Resumo:
The application of 3D grain-based modelling techniques is investigated in both small and large scale 3DEC models, in order to simulate brittle fracture processes in low-porosity crystalline rock. Mesh dependency in 3D grain-based models (GBMs) is examined through a number of cases to compare Voronoi and tetrahedral grain assemblages. Various methods are used in the generation of tessellations, each with a number of issues and advantages. A number of comparative UCS test simulations capture the distinct failure mechanisms, strength profiles, and progressive damage development using various Voronoi and tetrahedral GBMs. Relative calibration requirements are outlined to generate similar macro-strength and damage profiles for all the models. The results confirmed a number of inherent model behaviors that arise due to mesh dependency. In Voronoi models, inherent tensile failure mechanisms are produced by internal wedging and rotation of Voronoi grains. This results in a combined dependence on frictional and cohesive strength. In tetrahedral models, increased kinematic freedom of grains and an abundance of straight, connected failure pathways causes a preference for shear failure. This results in an inability to develop significant normal stresses causing cohesional strength dependence. In general, Voronoi models require high relative contact tensile strength values, with lower contact stiffness and contact cohesional strength compared to tetrahedral tessellations. Upscaling of 3D GBMs is investigated for both Voronoi and tetrahedral tessellations using a case study from the AECL’s Mine-by-Experiment at the Underground Research Laboratory. An upscaled tetrahedral model was able to reasonably simulate damage development in the roof forming a notch geometry by adjusting the cohesive strength. An upscaled Voronoi model underestimated the damage development in the roof and floor, and overestimated the damage in the side-walls. This was attributed to the discretization resolution limitations.
Resumo:
Ao longo de sua história a região do Vale Inferior do Tejo VIT foi abalada por vários sismos consideravelmente destrutivas, tendo alguns deles produzido significativas deformações nas estruturas marítimas localizadas no litoral a sudoeste do território Português; outros, moderados, foram produzidos por fontes locais, como os de 1344, 1531 e 1909. Nos últimos anos, devido à melhoria dos modelos de estrutura 3D e o desenvolvimento dos métodos numéricos, foram elaborados vários estudos de síntese de movimento forte do solo para a região do Baixo Tejo utilizando o método de diferenças finitas. Para confirmar o modelo de velocidades desta bacia usámos medidas de ruído sísmico, aplicámos um método baseado na razão espectral H/V, e, a partir destas curvas, por inversão, obtivemos um modelo de velocidades para a região estudada. Os resultados revelam uma boa concordância entre o modelo obtido e os dados geofísicos e geológicos recolhidos na mesma área._ ABSTRACT: Along his history the Lower Tagus Valley (LTV) area was shaken by several earthquakes. The largest reported had their origin in the southwestern part of Iberia. Other moderate earthquakes were produced by local sources such as the 1344, 1531 and the 1909. ln the last years, due to 3D structural model improvement and development in numerical methods, several studies have successful obtained strong-ground motion synthesis for the LVT region using finite difference method. To confirm the velocity model of the LTV sedimentary basin obtained by geophysical and geological data, we use broad-band microtremor measurements and application of the horizontal to vertical (H/V) spectral ratio method. We have obtained a velocity model for the studied region by inversion of the H/V curve. The results have good agreement geological and geophysical data.
Resumo:
The spatial distribution of the magnetic field and the coupling between the coils in the Wireless Power Transfer (WPT) systems is an important aspect to consider in the system design and efficiency optimization. The presented study in this paper is based on tests performed on a physical model. The transmitting (primary) equipment, is an electrical three-phase system, capable to be connected in star or delta (both electrically and geometrically). The measured results allow to describe graphically the magnetic field distribution in three dimensions. The analytical formulas aim to help to understand and to quantify the physical phenomena but they cannot be considered a universal approach and the measurement results help to understand better the observable facts. In the WPT, the key issues that will influence the efficiency, are the alignment of the coils, the spatial orientation of the magnetic field, the detachment and the tilt between the windings, all they changing the magnetic coupling between the transmitter and the receiver of energy. This research is directed not only to the magnetic field distribution but finally, to optimize the energy transfer efficiency.